重庆欢乐生肖

欢迎访问 草业科学,今天是

氮、磷添加对呼伦贝尔草甸草原生态系统净CO2交换的影响

敖小蔓 孟倩 徐智超 王洪义 王正文 王永慧

引用本文: 敖小蔓,孟倩,徐智超,王洪义,王正文,王永慧. 氮、磷添加对呼伦贝尔草甸草原生态系统净CO交换的影响. 草业科学, 2020, 37(8): 1428-1439 doi: shu
Citation:  AO X M, MENG Q, XU Z C, WANG H Y, WANG Z W, WANG Y H. Effects of nitrogen and phosphorus addition on the net ecosystem CO exchange of meadow steppe in Hulunbuir, Inner Mongolia. Pratacultural Science, 2020, 37(8): 1428-1439 doi: shu

氮、磷添加对呼伦贝尔草甸草原生态系统净CO2交换的影响

    作者简介: 敖小蔓(1996-),女,内蒙古乌兰浩特人,在读硕士生,研究方向为草地生态系统碳循环。E-mail: ;
    通讯作者: 王永慧, .cn
  • 基金项目: 国家重点研发计划(2016YFC0500602-3),国家自然科学基金(31971434,31600385,31670454)和内蒙古自然科学基金(2015ZD05,2019MS03088)

摘要: 日益增加的大气氮、磷沉降通过影响生态系统光合作用和呼吸作用间的平衡而影响其净CO2交换(net ecosystem CO2 exchange, NEE)和碳源/汇功能,从而反馈于全球气候变化。本研究通过氮、磷添加控制试验,研究其对内蒙古自治区呼伦贝尔草甸草原生态系统碳循环关键过程和碳源/汇功能的影响。结果表明: 氮添加通过促进自养呼吸(autotrophic respiration, AR),从而促进生态系统呼吸(ecosystem respiration, ER),且因其对ER的促进作用大于对生态系统总光合(gross ecosystem photosynthesis, GEP)的促进作用,综合作用表现出显著促进生态系统的碳排放。此外,单独添加磷对GEP、ER和NEE均无显著影响,但氮、磷同时添加具有比单独添加氮时更低的CO2排放。另外,受季节性干旱的影响,不同处理条件下的生态系统均表现为净CO2排放源。综上可知,降水变化和氮沉降共同决定着内蒙古呼伦贝尔草甸草原的NEE,且干旱化的气候和增加的氮沉降具有导致该地区成为净CO2排放源的潜在可能性。

English

    1. [1]

      NIU S L, WU M Y, HAN Y, XIA J Y, ZHANG Z, YANG H J, WAN S Q.  Nitrogen effects on net ecosystem carbon exchange in a temperate steppe[J]. Global Change Biology, 2010, 16(1): 144-155. doi:

    2. [2]

      LU M, ZHOU X H, YANG Q, LI H, LUO Y Q, FANG C M, CHEN J K, YANG X, LI B.  Responses of ecosystem carbon cycle to experimental warming: A meta-analysis[J]. Ecology, 2013, 94(3): 726-738. doi:

    3. [3]

      CHEN J, LUO Y Q, XIA J Y, SHI Z, JIANG L F, NIU S L, ZHOU X H, CAO J J.  Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2016, 220(): 21-29. doi:

    4. [4]

      CHEN J, LUO Y Q, XIA J Y, WILCOX K R, CAO J J, ZHOU X H, JIANG L F, NIU S L, ESTERA K Y, HUANG R J, WU F, HU T F, LIANG J Y, SHI Z, GUO J F, WANG R W.  Warming effects on ecosystem carbon fluxes are modulated by plant functional types[J]. Ecosystems, 2017, 20(3): 515-526. doi:

    5. [5]

      LIU Z H, BALLANTYNE A P, POULTER B, ANDEREGG W R L, LI W, BASTOS A, CIAIS P.  Precipitation thresholds regulate net carbon exchange at the continental scale[J]. Nature Communications, 2018, 9(1): 3596-. doi:

    6. [6]

      QUAN Q, TIAN D S, LUO Y Q, ZHANG F Y, CROWTHERS T W, ZHU K, CHEN H Y H, ZHOU Q Q, NIU S L.  Water scaling of ecosystem carbon cycle feedback to climate warming[J]. Science Advances, 2019, 5(8): eaav1131-. doi:

    7. [7]

      SONG J, WAN S Q, PIAO S L, KNAPP A K, CLASSEN A T, VICCA S, CIAIS P, HOVENDEN M J, LEUZINGER S, BEIER C, KARDOL P, XIA J Y, LIU Q, RU J Y, ZHOU Z X, LUO Y Q, GUO D L, LANGLEY J A, ZSCHEISCHLER J, DUKES J S, TANG J W, CHEN J Q, HOFMOCKEL K S, KUEPPERS L M, RUSTAD L, LIU L L, SMITH M D, TEMPLER P H, THOMAS R Q, NORBY R J, PHILLIPS R P, NIU S L, FATICHI S, WANG Y P, SHAO P S, HAN H Y, WANG D D, LEI L J, WANG J L, LI X N, ZHANG Q, LI X M, SU F L, LIU B, YANG F, MA G G, LI G Y, LIU Y C, LIU Y Z, YANG Z L, ZHANG K S, MIAO Y, HU M J, YAN C, ZHANG A, ZHONG M X, HUI Y, LI Y, ZHENG M M.  A meta-analysis of 1, 119 manipulative experiments on terrestrial carbon-cycling responses to global change[J]. Nature Ecology & Evolution, 2019, 3(9): 1309-1320.

    8. [8]

      PEñUELAS J, SARDANS J, RIVAS-UBACH A, JANSSENS I A.  The human-induced imbalance between C, N and P in Earth's life system[J]. Global Change Biology, 2012, 18(1): 3-6. doi:

    9. [9]

      孙学凯, 林力涛, 于占源, 黄月, 曾德慧.  施氮对沙质草地生态系统碳交换特征的影响[J]. 生态学杂志, 2019, 38(1): 104-112.
      SUN X K, LIN L T, YU Z Y, HUANG Y, ZENG D H.  Effects of nitrogen addition on ecosystem carbon exchange in a sandy grassland[J]. Chinese Journal of Ecology重庆欢乐生肖, 2019, 38(1): 104-112.

    10. [10]

      武倩, 韩国栋, 王忠武, 潘占磊, 刘芳, 王瑞珍, 张睿洋, 秦洁, 李江文.  模拟增温和氮素添加对荒漠草原生态系统碳交换的影响[J]. 生态学杂志, 2016, 35(6): 1427-1434.
      WU Q, HAN G D, WANG Z W, PAN Z L, LIU F, WANG R Z, ZHANG R Y, QIN J, LI J W.  Effects of warming and nitrogen on ecosystem carbon exchange on a desert steppe[J]. Chinese Journal of Ecology, 2016, 35(6): 1427-1434.

    11. [11]

      NAKANO T, SHINODA M.  Interannual variation in net ecosystem CO2 exchange and its climatic controls in a semiarid grassland of Mongolia[J]. Journal of Agricultural Meteorology, 2018, 74(2): 92-96. doi:

    12. [12]

      赵巴音那木拉, 红梅, 梁存柱, 武岩, 美丽, 霍丽霞, 刘向东, 白雪原.  施肥对荒漠草原生态系统CO2通量的影响[J]. 草原与草业, 2019, 31(1): 44-53.
      Zhao Bayinnamula, HONG M, LIANG C Z, WU Y, MEI L, HUO L X, LIU X D, BAI X Y.  Effect of fertilization on CO2 flux in the Stipa breviflora desert steppe of Inner Mongolia[J]. Grassland and Prataculture重庆欢乐生肖, 2019, 31(1): 44-53.

    13. [13]

      SOCHA L M. Influence of nitrogen and phosphorus on ecosystem CO2重庆欢乐生肖 exchange in a restored temperate grassland. Master Thesis. Buffalo State: State University of New York College at Buffalo, 2012.

    14. [14]

      白永飞, 陈世苹.  中国草地生态系统固碳现状, 速率和潜力研究[J]. 植物生态学报, 2018, 42(3): 261-264. doi:
      BAI Y F, CHEN S P.  Carbon sequestration of Chinese grassland ecosystems: Stock, rate and potential[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 261-264. doi:

    15. [15]

      SONG S S, ZHU J L, ZHENG T L, TANG Z Y, ZHANG F, JI C J, SHEN Z H, ZHU J X.  Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland[J]. Frontiers in Ecology and Evolution, 2020, 8(): 66-. doi:

    16. [16]

      赵科, 汪正芸, 李育庆, 郑天立, 胡健波.  两种修复方式对青藏高原取弃土场修复后草地盖度的影响[J]. 草业科学, 2019, 36(10): 2499-2506. doi:
      ZHAO K, WANG Z Y, LI Y Q, ZHENG T L, HU J B.  Effect of two restorations on the grassland coverage after remediation of take-abandon soil field on the Qinghai-Tibet Plateau[J]. Pratacultural Science, 2019, 36(10): 2499-2506. doi:

    17. [17]

      ZHU J X, WANG Q F, HE N P, SMITH M D, ELSER J J, DU J Q, YUAN G F, YU G R, YU Q.  Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation[J]. Journal of Geophysical Research-Biogeosciences, 2016, 121(6): 1605-1616. doi:

    18. [18]

      游成铭, 胡中民, 郭群, 干友民, 李凌浩, 白文明, 李胜功.  氮添加对内蒙古温带典型草原生态系统碳交换的影响[J]. 生态学报, 2016, 36(8): 2142-2150.
      YOU C M, HU Z M, GUO Q, GAN Y M, LI L H, BAI W M, LI S G.  Effects of nitrogen addition on carbon exchange in a typical steppe in Inner Mongolia[J]. Acta Ecologica Sinica, 2016, 36(8): 2142-2150.

    19. [19]

      HARPOLE W S, NGAI J T, CLELAND E E, SEABLOOM E W, BORER E T, BRACKEN M E, ELSER J J, GRUNER D S, HILLEBRAND H, SHURIN J B, SMITH J E.  Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852-862. doi:

    20. [20]

      YANG G J, LU X T, STEVENS C J, ZHANG G M, WANG H Y, WANG Z W, ZHANG Z J, LIU Z Y, HAN X G.  Mowing mitigates the negative impacts of N addition on plant species diversity[J]. Oecologia, 2019, 189(3): 769-779. doi:

    21. [21]

      梁潇洒, 马望, 王洪义, 雒文涛, 王正文.  呼伦贝尔草原3种植物的功能性状对氮磷添加的响应[J]. 中国草地学报, 2019, 41(1): 61-67.
      LIANG X S, MA W, WANG H Y, LUO W T, WANG Z W.  Response of plant functional traits to nutrient and phosphorus addition in Hulunbuir grassland[J]. Chinese Journal of Grassland, 2019, 41(1): 61-67.

    22. [22]

      重庆欢乐生肖 r core team. r: a language and environment for statistical computing. (2007-10-20)[2019-06-10] .

    23. [23]

      STREET L E, MIELKE N, WOODIN S J.  Phosphorus availability determines the response of tundra ecosystem carbon stocks to nitrogen enrichment[J]. Ecosystems, 2017, 21(6): 1155-1167.

    24. [24]

      NIU S L, YANG H J, ZHANG Z, WU M Y, LU Q, LI L H, HAN X G, WAN S Q.  Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe[J]. Ecosystems, 2009, 12(6): 915-926. doi:

    25. [25]

      ROCHA A V, POTTS D L, GOULDEN M L.  Standing litter as a driver of interannual CO2 exchange variability in a freshwater marsh[J]. Journal of Geophysical Research Biogeosciences, 2008, 113(): G04020-.

    26. [26]

      MOINET G Y K, CIERAAD E, TURNBULL M H, WHITEHEAD D.  Effects of irrigation and addition of nitrogen fertiliser on net ecosystem carbon balance for a grassland[J]. Science of the Total Environment, 2017, 579(): 1715-1725. doi:

    27. [27]

      ZENG W J, ZHANG J Y, WANG W.  Strong root respiration response to nitrogen and phosphorus addition in nitrogen-limited temperate forests[J]. Science of the Total Environment, 2018, 642(): 646-655. doi:

    28. [28]

      XIAO C W, GUENET B, ZHOU Y, SU J Q, JANSSENS I A.  Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation[J]. Oikos, 2015, 124(5): 649-657. doi:

    29. [29]

      CHEN D M, LI J J, LAN Z C, HU S J, BAI Y F, NIU S L.  Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology, 2016, 30(4): 658-669. doi:

    30. [30]

      DRISCOLL C T, DRISCOLL K M, MITCHELL M J, RAYNAL D J.  Effects of acidic deposition on forest and aquatic ecosystems in New York State[J]. Environmental Pollution, 2003, 123(3): 327-336. doi:

    31. [31]

      POSCHENRIEDER C, GUNSE B, CORRALES I, BARCELO J.  A glance into aluminum toxicity and resistance in plants[J]. Science of the Total Environment, 2008, 400(1/3): 356-368.

    32. [32]

      GUO H, YE C L, ZHANG H, PAN S, JI Y G, LI Z, LIU M Q, ZHOU X H, DU G Z, HU F, HU S J.  Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2017, 113(): 26-34. doi:

    33. [33]

      DU E Z, TERRER C, PELLEGRINI A F, AHLSTRÖM A, VAN LISSA C J, ZHAO X, XIA N, WU X H, JACKSON R B.  Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221-226. doi:

    34. [34]

      SÁNCHEZ-RODRÍGUEZ A R, DEL CAMPILLO M C, TORRENT J.  Phosphate aggravates iron chlorosis in sensitive plants grown on model calcium carbonate-iron oxide systems[J]. Plant and Soil, 2013, 373(1/2): 31-42. doi:

    35. [35]

      ZHENG L Q, HUANG F L, NARSAI R, WU J J, GIRAUD E, HE F, CHENG L J, WANG F, WU P, WHELAN J, SHOU H X.  Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings[J]. Plant Physiology, 2009, 151(1): 262-274. doi:

    36. [36]

      何利元, 郭群, 李胜功, 白文明, 李凌浩.  氮磷添加对内蒙古温带草地地上生物量的影响[J]. 应用生态学报, 2015, 26(8): 2291-2297.
      HE L Y, GUO Q, LI S G, BAI W M, LI L H.  Influence of nitrogen and phosphorus addition on the aboveground biomass in Inner Mongolia temperate steppe[J]. Chinese Journal of Applied Ecology重庆欢乐生肖, 2015, 26(8): 2291-2297.

    37. [37]

      MACKENZIE F T, VER L M, LERMAN A.  Century-scale nitrogen and phosphorus controls of the carbon cycle[J]. Chemical Geology重庆欢乐生肖, 2002, 190(1): 13-32.

    38. [38]

      XIA J Y, NIU S L, WAN S Q.  Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J]. Global Change Biology, 2009, 15(6): 1544-1556. doi:

    39. [39]

      NIU S L, WU M Y, HAN Y, XIA J Y, LI L H, WAN S Q.  Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe[J]. New Phytologist重庆欢乐生肖, 2008, 177(1): 209-219.

    40. [40]

      ZHANG H, YU H, ZHOU C T, ZHAO H T, QIAN X Q.  Aboveground net primary productivity not CO2 exchange remain stable under three timing of extreme drought in a semi-arid steppe[J]. PLoS One, 2019, 14(3): e0214418-. doi:

    41. [41]

      哈斯木其尔, 张学耀, 牛国祥, 王银柳, 黄建辉.  氮素添加对内蒙古草甸草原生态系统CO2交换的影响[J]. 植物学报, 2018, 53(1): 27-41. doi:
      Hasimuqier, ZHANG X Y, NIU G X, WANG Y L, HUANG J H.  Effects of nitrogen addition on ecosystem CO2 exchange in a meadow steppe, Inner Mongolia[J]. Chinese Bulletin of Botany, 2018, 53(1): 27-41. doi:

    42. [42]

      HUANG J, XUE Y, SUN S L, ZHANG J C.  Spatial and temporal variability of drought during 1960–2012 in Inner Mongolia, north China[J]. Quaternary International, 2015, 355(): 134-144. doi:

    1. [1]

      黄文华王树彦韩冰焦志军韩国栋 . 草地生态系统对模拟大气增温的响应. 草业科学, 2014, 8(11): 2069-2076. doi: 

    2. [2]

      孙建张振超董世魁 . 青藏高原高寒草地生态系统的适应性管理. 草业科学, 2019, 36(4): 933-938. doi: 

    3. [3]

      赵玉婷李文龙陈迪余翠赵新来许静郭旭临 . 高寒牧区草地生态系统健康动态评价——以甘南地区为例. 草业科学, 2017, 11(1): 16-29. doi: 

    4. [4]

      邓邦良袁知洋郭晓敏 . 武功山草甸土壤微量元素分布及对人为干扰的响应. 草业科学, 2015, 9(10): 1555-1560. doi: 

    5. [5]

      刘倩郑翔邓邦良郑利亚黄立君王书丽张令郭晓敏 . 武功山草甸不同海拔对土壤和植物凋落物磷含量的影响. 草业科学, 2017, 11(11): 2183-2190. doi:  重庆欢乐生肖

    6. [6]

      泽让东科文勇立艾鷖赵洪文陈有军 . 放牧对青藏高原高寒草地土壤和生物量的影响. 草业科学, 2016, 10(10): 1975-1980. doi: 

    7. [7]

      杨兴卓袁明龙 . 放牧对天然草地昆虫群落的研究现状及进展. 草业科学, 2019, 36(11): 2937-2951. doi:  重庆欢乐生肖

    8. [8]

      周文婷黄毅斌王义祥钟珍梅翁伯琦 . 农业生态系统碳循环. 草业科学, 2013, 7(11): 1725-1731.

    9. [9]

      重庆欢乐生肖  woguocaodishengtaixitongtanxunhuanjizhijitanxujihesuanyanjiuhuiguyuzhanwang. caoyekexue, 2011, 5(9): 1611-1616.

    10. [10]

      重庆欢乐生肖  qingzanggaoyuangaohanguancongcaodianshengtaixitongtanpinghengyanjiu. caoyekexue, 2010, 4(1): 37-41.

    11. [11]

       qilianshangaohancaodianshengtaixitongkunchongqunluotezheng. caoyekexue, 2012, 6(1): 121-127.

    12. [12]

      张兴禄李 广 . 高原鼠兔和高原鼢鼠在高寒草甸生态系统的作用. 草业科学, 2015, 9(5): 816-. doi: 

    13. [13]

      重庆欢乐生肖  ganraoduicaoditanxunhuanyingxiangdeyanjiuyuzhanwang. caoyekexue, 2012, 6(12): 1855-1861.

    14. [14]

      曾 凯刘 琳蔡义民陈有军陈冬明孙飞达裴姝婷周春梅申旭东 . 地下生态系统中氮素的循环及影响因素. 草业科学, 2017, 11(3): 502-514. doi:  重庆欢乐生肖

    15. [15]

       qingzanggaoyuangaohancaodianshengtaixitongco2tongliangyanjiujinzhan. caoyekexue, 2012, 6(2): 204-210.

    16. [16]

      李冰葛世栋徐田伟徐世晓李善龙 . 放牧强度对青藏高原高寒草甸净生态系统交换量的影响. 草业科学, 2014, 8(7): 1203-1210. doi: 

    17. [17]

      耿晓东旭日 . 梯度增温对青藏高原高寒草甸生态系统碳交换的影响. 草业科学, 2017, 11(12): 2407-2415. doi: 

    18. [18]

      孙霞丁娓贾宏涛金俊香 . 模拟放牧对天山北坡草甸草原生态系统碳储量的影响. 草业科学, 2016, 10(3): 377-384. doi:  重庆欢乐生肖

    19. [19]

      蔡瑜如傅华陆丽芳王静 . 陆地生态系统植物吸收有机氮的研究进展. 草业科学, 2014, 8(7): 1357-1366. doi:  重庆欢乐生肖

    20. [20]

       武功山山地草甸生态系统土壤无机磷垂直地带性分布特征. 草业科学, 2014, 8(9): 1610-1617. doi: 

  • 重庆欢乐生肖

    图 1  2018年月均大气温度、降水量的季节变化

    Figure 1.  Seasonal variation in monthly mean ambient temperature and precipitation in 2018

    图 2  氮、磷添加处理下的土壤温度、土壤湿度、净生态系统CO2交换、生态系统总光合、生态系统呼吸、自养呼吸、异养呼吸、根系呼吸、地上植物呼吸和土壤呼吸的季节动态

    Figure 2.  Seasonal dynamics of soil temperature, soil moisture, net ecosystem CO2 exchange, gross ecosystem photosynthesis, ecosystem respiration, autotrophic respiration, heterotrophic respiration, root respiration, aboveground plant respiration, and soil respiration under different nitrogen and phosphorus addition treatments

    图 3  氮、磷添加处理对净生态系统CO2交换、生态系统总光合、生态系统呼吸、自养呼吸、异养呼吸、根系呼吸、地上植物呼吸和土壤呼吸的影响

    Figure 3.  Effects of nitrogen and phosphorus addition on net ecosystem CO2重庆欢乐生肖 exchange, gross ecosystem photosynthesis, ecosystem respiration, autotrophic respiration, heterotrophic respiration, root respiration, aboveground plant respiration, and soil respiration

    图 4  内蒙古呼伦贝尔草甸草原碳循环关键过程对氮、磷添加响应的模式图

    Figure 4.  Diagram of the key ecosystem carbon cycling processes in response to nitrogen and phosphorus addition in meadow steppe in Hulunbuir, Inner Mongolia

    表 1  土壤温度和土壤湿度对碳循环关键过程影响的一般线性模型分析结果

    Table 1.  Results of a general linear model for the effects of soil temperature and moisture on ecosystem carbon cycling processes

    指标 Parameter项目 Item ST SM N PST × SM N × P ST × N ST × P SM × N SM ꞉ P
    NEE F 0.22 14.39*** 3.98# 0.08 111.02*** 0.95 8.40** 0.04 9.67** 5.91*
    SS/% 0.10 6.67 1.85 0.04 51.48 0.44 3.90 0.02 4.48 2.74
    GEP F 212.94*** 45.53*** 3.75# 2.09 294.46*** 0.02 0.01 0.66 1.63 0.13
    SS/% 34.22 7.32 0.60 0.34 47.32 0.00 0.00 0.11 0.26 0.02
    ER F 378.99*** 399.93*** 39.08*** 3.59# 95.92*** 0.39 8.01** 0.57 0.91 0.08
    SS/% 38.34 40.46 3.95 0.36 9.70 0.04 0.81 0.06 0.09 0.01
    AR F 359.71*** 364.52*** 51.26*** 6.44* 95.12*** 0.22 10.35** 0.86 2.12 0.01
    SS/% 37.80 38.31 5.39 0.68 10.00 0.02 1.09 0.09 0.22 0.00
    HR F 436.52*** 206.96*** 2.16 1.94 95.22*** 0.24 0.02 0.49 1.57 0.01
    SS/% 51.11 24.23 0.25 0.23 11.15 0.03 0.00 0.06 0.18 0.00
    RR F 30.71*** 169.12*** 12.33*** 11.43** 17.76*** 0.19 0.09 0.63 0.11 15.31***
    SS/% 8.37 46.12 3.36 3.12 4.84 0.05 0.02 0.17 0.03 4.18
    APR F 369.39*** 287.95*** 49.28*** 10.10** 83.70*** 0.43 12.30*** 1.61 1.72 0.08
    SS/% 42.09 32.81 5.62 1.15 9.54 0.05 1.40 0.18 0.20 0.01
    SR F 360.80*** 416.03*** 14.60*** 11.34** 90.43*** 0.31 0.00 2.55 0.01 7.44**
    SS/% 35.63 41.09 1.44 1.12 8.93 0.03 0.00 0.25 0.00 0.73
     ST: 土壤温度;SM: 土壤湿度;N: 氮添加;P: 磷添加;NEE: 净生态系统碳交换;GEP: 生态系统总光合;ER: 生态系统呼吸;AR: 自养呼吸;HR: 异养呼吸;RR: 根系呼吸;APR: 地上植物呼吸;SR: 土壤呼吸。SS表示变量对方差贡献比例的解释程度。#表示P < 0.10;*表示P < 0.05;**表示P < 0.01;***表示P < 0.001。由于三项交互的影响程度较弱,此处不作考虑,只给出主因素效应及两项交互。表2同。

     ST: soil temperature; SM: soil moisture; N: nitrogen addition; P: phosphorus addition; NEE: net ecosystem CO2 exchange; GEP: gross ecosystem photosynthesis; ER: ecosystem respiration; AR: autotrophic respiration; HR: heterotrophic respiration; RR: root respiration; APR: aboveground plant respiration; SR: soil respiration. SS is the proportion of variances explained by the variable. ns, P < 0.10, *P < 0.05; **P < 0.01, ***P < 0.001. Since the influence degree of the three interactions is weak, it is not considered here, and only the main factor effect and the two interactions are presented; this is applicable for Table 2 as well.
    下载: 导出CSV

    表 2  氮、磷添加对生态系统碳循环关键过程影响的重复测量方差分析结果

    Table 2.  Results (F重庆欢乐生肖-values) of repeated measures ANOVA for the effects of nitrogen and phosphorus addition on ecosystem carbon cycling processes

    类型
    Type
    处理 Treatment
    氮 N磷 P时间 T氮 × 磷
    N × P
    氮 × 时间
    N × T
    磷 × 时间
    P × T
    氮 × 磷 × 时间
    N × P × T
    NEE 101.02*** 1.73 839.14*** 7.29* 67.72*** 47.70*** 63.10***
    GEP 8.28* 22.62** 3840.92*** 9.96* 79.63*** 3.79** 12.10***
    ER 164.95*** 16.88** 4047.46*** 0.98 44.53 19.37 12.1
    AR 158.87*** 23.42** 2908.97*** 0.26 43.79*** 19.26*** 12.24***
    HR 0.39 5.38* 403.58*** 0.42 8.40*** 3.16* 0.39
    RR 7.39* 13.21** 86.08*** 0.06 6.31*** 10.30*** 0.78
    APR 128.20*** 33.75*** 2377.84*** 0.87 55.34*** 21.73*** 17.32***
    SR 6.93* 35.19*** 679.24*** 0.36 20.01*** 15.22*** 1.62
     氮: 氮添加处理;磷: 磷添加处理;时间: 测定时间。
     N: nitrogen addition; P: phosphrous addition; T: measurement time.
    下载: 导出CSV
    重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖
        • <form id='rp9x0'></form>
            <bdo id='rp9x0'><sup id='rp9x0'><div id='rp9x0'><bdo id='rp9x0'></bdo></div></sup></bdo>

              • 加载中
              • 图(4)表(2)
                计量
                • PDF下载量:  25
                • 文章访问数:  1739
                • HTML全文浏览量:  462
                文章相关
                • 通讯作者:  王永慧, .cn
                • 收稿日期:  2019-04-18
                • 网络出版日期:  2019-07-09
                • 刊出日期:  2019-08-17
                通讯作者: 陈斌,
                • 1. 

                  shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                1. 本站搜索
                2. 百度学术搜索
                3. 万方数据库搜索
                4. CNKI搜索

                /

                返回文章
                重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖