重庆欢乐生肖

欢迎访问 草业科学,今天是

zhiwushengzhangdiaojiewuzhiyucaopingcaojimucaodefeishengwunijingyingda

产祝龙 张慧 刘梦垚

引用本文: 产祝龙,张慧,刘梦垚. 植物生长调节物质与草坪草及牧草的非生物逆境应答. 草业科学, 2019, 36(12): 3007-3023. doi: shu
Citation:  CHAN Z L, ZHANG H, LIU M Y. Roles of plant growth regulators during abiotic stress responses of turfgrass and forage. Pratacultural Science, 2019, 36(12): 3007-3023. doi: shu

植物生长调节物质与草坪草及牧草的非生物逆境应答

    作者简介: 张慧(1994-),女,山西怀仁人,硕士,研究方向为草坪植物低温应答。E-mail: zhang-hui@webmail.hzau.edu.cn;
    通讯作者: 产祝龙, zlchan@mail.hzau.edu.cn
  • 基金项目: 本研究得到十三五重点研发计划项目(项目编号: 2017YFD0201305)、华中农业大学自主科技创新基金(项目编号: 2016RC010)以及国家自然科学基金面上项目(项目编号: 31872143)的资助

摘要: 非生物胁迫影响了草坪草和牧草体内多种代谢物及通路的变化,抑制植物的生长。外源物质处理可以有效提高草坪草和牧草对逆境的抗性。本文综述了植物激素、生长调节剂、渗透调节物质、气体分子、离子及氨基酸类物质对草坪草和牧草逆境应答的影响。外源物质之间存在协同或拮抗作用,共同调控了草坪草和牧草下游相关基因的表达,改变了生理代谢途径,缓解了活性氧的伤害、减轻了细胞膜的损伤和离子的毒害,从而起到延缓衰老、提高抗逆性和改善草坪品质的效果。针对模式植物上植物激素的研究进展,提出了今后在草坪草抗逆应答方面需要开展的研究工作。

English

    1. [1]

      CHAN Z.  Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis[J]. Genomics, 2012, 100(2): 110-115. doi:

    2. [2]

      zhang d p. abscisic acid: metabolism, transport and signaling. berlin: springer netherlands, 2014.

    3. [3]

      ZHU J K.  Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(): 313-324. doi:

    4. [4]

      DACOSTA M, HUANG B.  Drought survival and recuperative ability of bentgrass species associated with changes in abscisic acid and cytokinin production[J]. Journal of the American Society for Horticultural Science, 2007, 132(1): 60-66. doi:

    5. [5]

      MAN D, BAO Y X, HAN L B, ZHANG X.  Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars[J]. HortScience, 2011, 46(7): 1027-1032. doi:

    6. [6]

      WANG Z, HUANG B, XU Q.  Effects of abscisic acid on drought responses of Kentucky bluegrass[J]. Journal of the American Society for Horticultural Science, 2003, 128(1): 36-41. doi:

    7. [7]

      YANG Z, YU J, MEREWITZ E, HUANG B.  Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species[J]. Journal of the American Society for Horticultural Science, 2012, 137(2): 96-106. doi:

    8. [8]

      MCCANN S E, HUANG B.  Drought responses of Kentucky bluegrass and creeping bentgrass as affected by abscisic acid and trinexapac-ethyl[J]. Journal of the American Society for Horticultural Science, 2008, 133(1): 20-26. doi:

    9. [9]

      CHEN Z, WANG Z, YANG Y, LI M, XU B.  Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress[J]. Scientia Horticulturae, 2018, 228(): 1-9. doi:

    10. [10]

      JIANG Y, HUANG B.  Protein alterations in tall fescue in response to drought stress and abscisic acid[J]. Crop Science, 2002, 42(1): 202-207. doi:

    11. [11]

      LU S, SU W, LI H, GUO Z.  Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities[J]. Plant Physiology and Biochemistry, 2009, 47(2): 132-138. doi:

    12. [12]

      MOHAMMADI M H S, ETEMADI N, ARAB M M, AALIFAR M, ARAB M, PESSARAKLI M.  Molecular and physiological responses of iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress[J]. Plant Physiology and Biochemistry, 2017, 111(): 129-143. doi:

    13. [13]

      FU J, WU Y, MIAO Y, XU Y, ZHAO E, WANG J, SUN H, LIU Q, XUE Y, XU Y, HU T.  Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways[J]. Scientific reports, 2017, 7(): 39865-. doi:

    14. [14]

      ZHANG X, ERVIN E H, WALTZ C, MURPHY T.  Metabolic changes during cold acclimation and deacclimation in five bermudagrass varieties: II. Cytokinin and abscisic acid metabolism[J]. Crop Science, 2011, 51(2): 847-853. doi:

    15. [15]

      CHENG Z, JIN R, CAO M, LIU X, CHAN Z.  Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon)[J]. Plant Cell, Tissue and Organ Culture, 2016, 125(2): 231-240. doi:

    16. [16]

      ZHOU B, GUO Z, LIU Z.  Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress[J]. Crop Science, 2005, 45(2): 599-605. doi:

    17. [17]

      ZHANG X, SHANG C, LIU Y, HU G, HARICH K, ERVIN E H.  Hormone and dehydrin expression responses to cold acclimation in two zoysiagrass cultivars with contrasting freezing tolerance[J]. International Turfgrass Society Research Journal, 2017, 13(1): 547-555.

    18. [18]

      KRISHNAN S, MEREWITZ E B.  Phytohormone responses and cell viability during salinity stress in two creeping bentgrass cultivars differing in salt tolerance[J]. Journal of the American Society for Horticultural Science, 2015, 140(4): 346-355. doi:

    19. [19]

      XU Y, Huang B.  Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance[J]. Journal of the American Society for Horticultural Science, 2007, 132(2): 185-192.

    20. [20]

      PLANCHET E, VERDU I, DELAHAIE J, CUKIER C, GIRARD C, MORÈRE-LE PAVEN M C, LIMAMI A M.  Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula[J]. Journal of Experimental Botany, 2014, 65(8): 2161-2170. doi:

    21. [21]

      PALMA F, LÓPEZ-GÓMEZ M, TEJERA NA, LLUCH C.  Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity[J]. Plant Science, 2014, 223(): 16-24. doi:

    22. [22]

      REN Z, WANG Z, ZHOU X E, SHI H, HONG Y, CAO M, CHAN Z, LIU X, XU H E, ZHU J K.  Structure determination and activity manipulation of the turfgrass ABA receptor FePYR1[J]. Scientific Reports, 2017, 7(1): 14022-. doi:

    23. [23]

      ZHOU P, ZHU Q, XU J, HUANG B.  Cloning and characterization of a gene, AsEXP1, encoding expansin proteins inducible by heat stress and hormones in creeping bentgrass[J]. Crop Science, 2011, 51(1): 333-341. doi:

    24. [24]

      XU L, LI F, HAN L, SONG G, ZHANG X.  Overexpression of Arabidopsis DREB1A gene in transgenic Poa pratensis: Impacts on osmotic adjustment and hormone metabolism under drought[J]. International Turfgrass Society Research Journal, 2017, 13(1): 527-536.

    25. [25]

      SUN X, SUN C, LI Z, HU Q, HAN L, LUO H.  AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA‐dependent and independent signalling to attenuate plant response to abiotic stress[J]. Plant, Cell & Environment, 2016, 39(6): 1320-1337.

    26. [26]

      ZHANG Z, WANG Y, CHANG L, ZHANG T, AN J, LIU Y, CAO Y, ZHAO X, SHA X, HU T, YANG P.  MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco[J]. Plant Cell Reports, 2016, 35(2): 439-453. doi:

    27. [27]

      WANG Y, REITER R J, CHAN Z.  Phytomelatonin: A universal abiotic stress regulator[J]. Journal of Experimental Botany, 2018, 69(5): 963-974. doi:

    28. [28]

      CHAN Z, SHI H.  Improved abiotic stress tolerance of bermudagrass by exogenous small molecules[J]. Plant Signaling & Behavior, 2015, 10(3): e991577-.

    29. [29]

      MA X, ZHANG J, BURGESS P, ROSSI S, HUANG B.  Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera)[J]. Environmental and Experimental Botany, 2018, 145(): 1-11. doi:

    30. [30]

      ZHANG J, SHI Y, ZHANG X, DU H, XU B, HUANG B.  Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.)[J]. Environmental and Experimental Botany, 2017, 138(): 36-45. doi:

    31. [31]

      ZHANG J, LI H, XU B, LI J, HUANG B.  Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.)[J]. Frontiers in Plant Science, 2016, 7(): 1500-.

    32. [32]

      SHI H, JIANG C, YE T, TAN D X, REITER R J, ZHANG H, LIU R, CHAN Z.  Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin[J]. Journal of Experimental Botany重庆欢乐生肖, 2014, 66(3): 681-694.

    33. [33]

      SHI H, WANG X, TAN D X, REITER R J, CHAN Z.  Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.)[J]. Journal of Pineal Research, 2015, 59(1): 120-131. doi:

    34. [34]

      HU Z, FAN J, XIE Y, AMOMBO E, LIU A, GITAU M M, KHALDUN A B M, CHEN L, FU J.  Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin[J]. Plant Physiology and Biochemistry, 2016, 100(): 94-104. doi:

    35. [35]

      ALAM M N, ZHANG L, YANG L, ISLAM M R, LIU Y, LUO H, YANG P, WANG Q, CHAN Z.  Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide[J]. BMC genomics, 2018, 19(1): 224-. doi:

    36. [36]

      ANTONIOU C, CHATZIMICHAIL G, XENOFONTOS R, PAVLOU J J, PANAGIOTOU E, CHRISTOU A, FOTOPOULOS V.  Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism[J]. Journal of Pineal Research, 2017, 62(4): e12401-. doi:

    37. [37]

      CHEN Z, GU Q, YU X, HUANG L, XU S, WANG R, SHEN W, SHEN W.  Hydrogen peroxide acts downstream of melatonin to induce lateral root formation[J]. Annals of Botany, 2018, 121(6): 1136-.

    38. [38]

      GU Q, CHEN Z, YU X, CUI W, PAN J, ZHAO G, XU S, WANG R, SHEN W.  Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis[J]. Plant Science, 2017, 261(): 28-37. doi:

    39. [39]

      SHI H, CHAN Z.  Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway[J]. Journal of Integrative Plant Biology, 2014, 56(2): 114-121. doi:

    40. [40]

      KRISHNAN S, MEREWITZ E B.  Polyamine application effects on gibberellic acid content in creeping bentgrass during drought stress[J]. Journal of the American Society for Horticultural Science, 2017, 142(2): 135-142. doi:

    41. [41]

      LI Z, ZHOU H, PENG Y, ZHANG X, MA X, HUANG L, YAN Y.  Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones[J]. Plant Growth Regulation, 2015, 76(1): 71-82. doi:

    42. [42]

      MA Y, SHUKLA V, MEREWITZ E B.  Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment[J]. PloS One, 2017, 12(4): e0175848-. doi:

    43. [43]

      SHI H, YE T, CHAN Z.  Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses[J]. Journal of Proteome Research, 2013, 12(11): 4951-4964. doi:

    44. [44]

      ZHANG L, HU T, AMOMBO E, WANG G, XIE Y, FU J.  The alleviation of heat damage to photosystem II and enzymatic antioxidants by exogenous spermidine in tall fescue[J]. Frontiers in Plant Science, 2017, 8(): 1747-. doi:

    45. [45]

      LI S, CUI L, ZHANG Y, WANG Y, MAO P.  The variation tendency of polyamines forms and components of polyamine metabolism in Zoysiagrass (Zoysia japonica Steud.) to salt stress with exogenous spermidine application[J]. Frontiers in Physiology重庆欢乐生肖, 2017, 8(): 208-.

    46. [46]

      PUYANG X, AN M, XU L, HAN L, ZHANG X.  Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress[J]. Horticulture, Environment, and Biotechnology, 2016, 57(1): 11-19. doi:

    47. [47]

      MA Y, MEREWITZ E.  Polyamine content changes in creeping bentgrass exposed to salt stress[J]. Journal of the American Society for Horticultural Science, 2016, 141(5): 498-506. doi:

    48. [48]

      LI Z, ZHANG Y, XU Y, ZHANG X, PENG Y, MA X, HUANG L, YAN Y.  Physiological and iTRAQ: Based proteomic analyses reveal the function of spermidine on improving drought tolerance in white clover[J]. Journal of Proteome Research, 2016, 15(5): 1563-1579. doi:

    49. [49]

      ZHUO C, LIANG L, ZHAO Y, GUO Z, LU S.  A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation[J]. Plant, Cell & Environment, 2018, (): -. doi:

    50. [50]

      GUO Z, TAN J, ZHUO C, WANG C, XIANG B, WANG Z.  Abscisic acid, H2O2 and nitric oxide interactions mediated col-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation[J]. Plant Biotechnology Journal, 2014, 12(5): 601-612. doi:

    51. [51]

      LUO J, LIU M, ZHANG C, ZHANG P, CHEN J, GUO Z, LU S.  Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpressing s-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling[J]. Frontiers in Plant Science, 2017, 8(): 1655-. doi:

    52. [52]

      SAKAKIBARA H.  Cytokinins: Activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006, 57(): 431-449. doi:

    53. [53]

      ZHANG X, WANG K, ERVIN EH.  Optimizing dosages of seaweed extract-based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance[J]. Crop Science, 2010, 50(1): 316-320. doi:

    54. [54]

      CHANG Z, LIU Y, DONG H, TENG K, HAN L, ZHANG X.  Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass[J]. PloS One, 2016, 11(4): e0154005-. doi:

    55. [55]

      XU Y, HUANG B.  Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance[J]. Crop Science, 2009, 49(5): 1876-1884. doi:

    56. [56]

      XU L, ZHANG M, ZHANG X, HAN L B.  Cold acclimation treatment: Induced changes in abscisic acid, cytokinin, and antioxidant metabolism in Zoysiagrass (Zoysia japonica)[J]. Hortscience, 2015, 50(7): 1075-1080. doi:

    57. [57]

      JESPERSEN D, HUANG B.  Proteins associated with heat: Induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor[J]. Proteomics, 2015, 15(4): 798-812. doi:

    58. [58]

      LI Q, BETTANY A J, DONNISON I, GRIFFITHS C M, THOMAS H, SCOTT I M.  Characterisation of a cysteine protease cDNA from Lolium multiflorum leaves and its expression during senescence and cytokinin treatment[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2000, 1492(1): 233-236. doi:

    59. [59]

      MA X, ZHANG J, HUANG B.  Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance[J]. Environmental and Experimental Botany, 2016, 125(): 1-11. doi:

    60. [60]

      MEREWITZ E B, GIANFAGNA T, HUANG B.  Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera[J]. Journal of Experimental Botany, 2011, 62(1): 383-395. doi:

    61. [61]

      XU Y, BURGESS P, HUANG B.  Transcriptional regulation of hormone‐synthesis and signaling pathways by overexpressing cytokinin‐synthesis contributes to improved drought tolerance in creeping bentgrass[J]. Physiologia Plantarum, 2017, 161(2): 235-256. doi:

    62. [62]

      XU Y, HUANG B.  Transcriptional factors for stress signaling, oxidative protection, and protein modification in ipt-transgenic creeping bentgrass exposed to drought stress[J]. Environmental and Experimental Botany, 2017, 144(): 49-60. doi:

    63. [63]

      XING J, XU Y, TIAN J, GIANFAGNA T, HUANG B.  Suppression of shade-or heat-induced leaf senescence in creeping bentgrass through transformation with the ipt gene for cytokinin synthesis[J]. Journal of the American Society for Horticultural Science, 2009, 134(6): 602-609. doi:

    64. [64]

      范丽霞. 外源水杨酸对干旱胁迫下结缕草生长及生理影响. 沈阳: 辽宁大学硕士学位论文, 2013.
      FAN L X. Effect of exogenous salicylic acid on growth and physiology of Zoysia japonica重庆欢乐生肖 under drought stress. Shenyang: Master Thesis. Shenyang: Liaoning University, 2013.

    65. [65]

      LI Z, YU J, PENG Y, HUANG B.  Metabolic pathways regulated by abscisic acid, salicylic acid and γ‐aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera)[J]. Physiologia Plantarum, 2017, 159(1): 42-58. doi:

    66. [66]

      WANG Y, YANG Z M, ZHANG Q F, LI J L.  Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine[J]. Biologia Plantarum, 2009, 53(1): 179-. doi:

    67. [67]

      王英哲, 任伟, 徐安凯, 王志锋, 邓波.  低温胁迫下紫花苜蓿对外源SA和ABA的生理响应[J]. 华北农学报, 2012, 27(5): 144-149. doi:
      WANG Y Z, REN W, XU A K, WANG Z F, DENG B.  Physiological responses to exogenous SA and ABA in alfalfa varieties under chilling stress[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(5): 144-149. doi:

    68. [68]

      LARKINDALE J, HUANG B.  Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass[J]. Plant Growth Regulation, 2005, 47(1): 17-28. doi:

    69. [69]

      HE Y, LIU Y, CAO W, HUAI M, XU B, HUANG B.  Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass[J]. Crop Science, 2005, 45(3): 988-995. doi:

    70. [70]

      董慧, 段小春, 常智慧.  外源水杨酸对多年生黑麦草耐盐性的影响[J]. 北京林业大学学报, 2015, 37(2): 128-135.
      DONG H, DUAN X C, CHANG Z H.  Effect of exogenous salicylic acid on salt tolerance in perennial ryegrass[J]. Journal of Beijing Forestry University重庆欢乐生肖, 2015, 37(2): 128-135.

    71. [71]

      PALMA F, LÓPEZ-GÓMEZ M, TEJERA N A, LLUCH C.  Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition[J]. Plant Science, 2013, 208(): 75-82. doi:

    72. [72]

      SUN S, AN M, HAN L, YIN S.  Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass[J]. HortScience, 2015, 50(10): 1518-1523. doi:

    73. [73]

      WU W, ZHANG Q, ERVIN E, YANG Z, ZHANG X.  Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide[J]. Frontiers in Plant Science, 2017, 8(): 1017-. doi:

    74. [74]

      寇江涛, 师尚礼.  2, 4-表油菜素内酯对盐胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草原与草坪, 2015, 35(1): 1-8. doi:
      KOU J T, SHI S L.  Effect of 2, 4-epibrassinolide on seed germination and seedling growth of Medicago sativa under salt stress[J]. Grassland and Turf, 2015, 35(1): 1-8. doi:

    75. [75]

      HAN Y J, KIM Y S, HWANG O J, ROH J, GANGULY K, KIM S K, HWANG I, KIM J I.  Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass[J]. PLoS One, 2017, 12(10): e0187378-. doi:

    76. [76]

      HU Z, LIU A, BI A, AMOMBO E, GITAU M M, HUANG X, CHEN L, FU J.  Identification of differentially expressed proteins in bermudagrass response to cold stress in the presence of ethylene[J]. Environmental and Experimental Botany, 2017, 139(): 67-78. doi:

    77. [77]

      ZHAO M, LIU W, XIA X, WANG T, ZHANG W H.  Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene[J]. Physiologia Plantarum, 2014, 152(1): 115-129. doi:

    78. [78]

      CHEN T, YANG Q, GRUBER M, KANG J, SUN Y, DING W, ZHANG T, ZHANG X.  Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity[J]. Molecular Biology Reports, 2012, 39(5): 6067-6075. doi:

    79. [79]

      LI Y S, MAO X T, TIAN Q Y, LI L H, ZHANG W H.  Phosphorus deficiency-induced reduction in root hydraulic conductivity in Medicago falcata is associated with ethylene production[J]. Environmental and Experimental Botany, 2009, 67(1): 172-177. doi:

    80. [80]

      李亚萍, 彭燕.  IAA改善PEG处理下白三叶幼苗叶片氧化保护和渗透调节能力[J]. 草业科学, 2017, 34(11): 2295-2302. doi:
      LI Y P, PENG Y.  Improvement of oxidation resistance and osmotic regulation of white clover seedlings by exogenous auxin under polyethylene glycol stress[J]. Pratacultural Science, 2017, 34(11): 2295-2302. doi:

    81. [81]

      ZHANG X, ERVIN E H, WU W, SHARMA N, HAMILL A.  Auxin and trinexapac-ethyl impact on root viability and hormone metabolism in creeping bentgrass under water deficit[J]. Crop Science, 2017, 57(supplement1): S130-S137. doi:

    82. [82]

      BIANCO C, DEFEZ R.  Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain[J]. Journal of Experimental Botany, 2009, 60(11): 3097-3107. doi:

    83. [83]

      WANG S, REN X, HUANG B, WANG G, ZHOU P, AN Y.  Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots[J]. Scientific Reports, 2016, 6(): 30079-. doi:

    84. [84]

      ZAHAF O, BLANCHET S, DE ZÉLICOURT A, ALUNNI B, PLET J, LAFFONT C, DE LORENZO L, IMBEAUD S, ICHANTÉ JL, DIET A, BADRI M, ZABALZA A, GONZÁLEZ EM, DELACROIX H, GRUBER V, FRUGIER F, CRESPI M.  Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes[J]. Molecular Plant, 2012, 5(5): 1068-1081. doi:

    85. [85]

      SHEN C, YUE R, YANG Y, ZHANG L, SUN T, XU L, TIE S, WANG H.  Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection[J]. PLoS One, 2014, 9(9): e107495-. doi:

    86. [86]

      SHEN C, YUE R, BAI Y, FENG R, SUN T, WANG X, YANG Y, TIE S, WANG H.  Identification and analysis of Medicago truncatula auxin transporter gene families uncover their roles in responses to Sinorhizobium meliloti infection[J]. Plant and Cell Physiology, 2015, 56(10): 1930-1943. doi:

    87. [87]

      SHEN C, YUE R, SUN T, ZHANG L, XU L, TIE S, WANG H, YANG Y.  Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula[J]. Frontiers in Plant Science重庆欢乐生肖, 2015, 6(): 73-.

    88. [88]

      郭郁频, 任永霞, 刘贵河, 曹春梅, 闫利军.  外源钙和赤霉素对干旱胁迫下苜蓿幼苗生理特性的影响[J]. 草业学报, 2015, 24(7): 89-96. doi:
      GUO Y P, REN Y X, LIU G H, CAO C M, YIN L J.  Effects of calcium, GA3 and complex liquid on the physiological characteristics of alfalfa seedlings under drought stress[J]. Acta Prataculturae Sinica, 2015, 24(7): 89-96. doi:

    89. [89]

      孙彬, 陈为峰.  赤霉素对盐害下碱茅的萌发和幼苗生长的影响[J]. 水土保持研究, 2014, 21(6): 30-34.
      SUN B, CHEN W F.  Effect of gibberellin on the seed germination and seedling growth of Puccinellia distans under salt stress[J]. Research of Soil and Water Conservation重庆欢乐生肖, 2014, 21(6): 30-34.

    90. [90]

      YOUNESI O, MORADI A.  Effect of priming of seeds of Medicago sativa ‘bami’with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress[J]. Journal of Horticultural Research, 2014, 22(2): 167-174. doi:

    91. [91]

      DAI X, CHENG X, LI Y, TANG W, HAN L.  Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica)[J]. Biologia, 2012, 67(4): 681-688.

    92. [92]

      AGHARKAR M, LOMBA P, ALTPETER F, ZHANG H, KENWORTHY K, LANGE T.  Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions[J]. Plant Biotechnology Journal, 2017, 5(6): 791-801.

    93. [93]

      LIU J, HE H, VITALI M, VISENTIN I, CHARNIKHOVA T, HAIDER I, SCHUBERT A, RUYTER-SPIRA C, BOUWMEESTER H J, LOVISOLO C, CARDINALE F.  Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress[J]. Planta, 2015, 241(6): 1435-1451. doi:

    94. [94]

      ZHUANG L, WANG J, HUANG B.  Drought inhibition of tillering in Festuca arundinacea associated with axillary bud development and strigolactone signaling[J]. Environmental and Experimental Botany, 2017, 142(): 15-23. doi:

    95. [95]

      HU Q, ZHANG S, HUANG B.  Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes[J]. Plant Science, 2018, 271(): 34-39. doi:

    96. [96]

      SUZUKI H, REDDY M S, NAOUMKINA M, AZIZ N, MAY G D, HUHMAN D V, SUMNER LW, BLOUNT JW, MENDES P, DIXON R A.  Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula[J]. Planta, 2005, 220(5): 696-707. doi:

    97. [97]

      SHAHBA M A, QIAN Y L, HUGHES H G, KOSKI A J, CHRISTENSEN D.  Relationships of soluble carbohydrates and freeze tolerance in saltgrass[J]. Crop science, 2003, 43(6): 2148-2153. doi:

    98. [98]

      CASTONGUAY Y, NADEAU P, LECHASSEUR P, CHOUINARD L.  Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winter hardiness[J]. Crop Science, 1995, 35(): 509-516. doi:

    99. [99]

      DIONNE J, CASTONGUAY Y, NADEAU P, DESJARDINS Y.  Freezing tolerance and carbohydrate changes during cold acclimation of green-type annual bluegrass (Poa annua L.) ecotypes[J]. Crop Science, 2001, 41(2): 443-451. doi:

    100. [100]

      PATTON A J, CUNNINGHAM S M, VOLENEC J J, REICHER Z J.  Differences in freeze tolerance of Zoysiagrasses: II. Carbohydrate and proline accumulation[J]. Crop Science, 2007, 47(5): 2170-2181. doi:

    101. [101]

      李丽群, 陶莲, 周禾.  脱落酸、蔗糖和硅对高羊茅和草地早熟禾耐荫性的影响[J]. 草地学报, 2012, 20(1): 63-69. doi:
      LI L Q, TAO L, ZHOU H.  Influence of ABA, sucrose and silicon on enhancing shade tolerance of two lawn grasses[J]. Acta Agrestia Sinica, 2012, 20(1): 63-69. doi:

    102. [102]

      连俊方, 闫道良, 郭坤, 热依汗古丽·热西提.  海藻糖对NaCl胁迫下多年生黑麦草苗期生长和离子平衡的影响[J]. 安徽林业科技, 2012, 38(4): 9-12.
      LI J F, YAN D L, GUO K, Reyihanguli·Rexiti.  Effect of trehalose on the growth and ion balance of Lolium perenne undr NaCl stress in the seedling stage[J]. Anhui Forestry Science and Technology, 2012, 38(4): 9-12.

    103. [103]

      SUÁREZ R, CALDERÓN C, ITURRIAGA G.  Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose[J]. Crop Science, 2009, 49(5): 1791-1799. doi:

    104. [104]

      马小丽. 三种植物生长调节剂复配剂对盐胁迫下草地早熟禾生长的影响研究. 北京: 北京林业大学硕士学位论文, 2016.
      MA X L. Effects of three plant growth regulators on the growth of kentucky bluegrass (Poa pratensis L.) under salt stress. Master Thesis. Beijing: Beijing Forestry University, 2016.

    105. [105]

      刘晚苟, 廖锡佳.  壳聚糖对沿阶草叶片抗渗透胁迫的影响[J]. 岭南师范学院学报, 2004, 25(3): 55-57. doi:
      LIU W G, LIAO X J.  Effects of chitosan on the osmotic stress resistance of the Ophiopogon bodinieri Levl. leaves[J]. Journal of Zhanjiang Teachers College, 2004, 25(3): 55-57. doi:

    106. [106]

      LIU N, LIN S, HUANG B.  Differential effects of glycine betaine and spermidine on osmotic adjustment and antioxidant defense contributing to improved drought tolerance in creeping bentgrass[J]. Journal of the American Society for Horticultural Science, 2017, 142(1): 20-26. doi:

    107. [107]

      蔡海琳. 外源甜菜碱和5-氨基乙酰丙酸对高羊茅抗旱性的影响. 南京: 南京农业大学硕士学位论文, 2013.
      CAI H L. Effects of exogenous glycinebetaine and 5-Aminolevulinic acid on drought tolerance in tall fescue. Master Thesis. Nanjing: Nanjing Agricultural University, 2013.

    108. [108]

      何丽丹, 刘广明, 杨劲松, 李金彪, 吕真真.  根施甜菜碱缓解黑麦草幼苗盐胁迫效应研究[J]. 土壤学报, 2013, 50(5): 1054-1059.
      HE L D, LIU G M, YANG J S, LI J B, LYU Z Z.  Effect of root application of betaine on salt stress of ryegrass seedlings[J]. Acta Pedologica Sinica, 2013, 50(5): 1054-1059.

    109. [109]

      梁小红, 安勐颍, 宋峥, 徐广臣, 濮阳雪华.  外源甜菜碱对低温胁迫下结缕草生理特性的影响[J]. 草业学报, 2015, 24(9): 181-188. doi:
      LIANG X H, AN M Y, SONG Z, XU G C, PUYANG X H.  Effects of exogenous glycine betaine on the physiological characteristics of Zoysia japonica under low-temperature stress[J]. Acta Prataculturae Sinica, 2015, 24(9): 181-188. doi:

    110. [110]

      ARMENGAUD P, THIERY L, BUHOT N, GRENIER-DE MARCH G, SAVOURÉ A.  Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features[J]. Physiologia Plantarum, 2004, 120(3): 442-450. doi:

    111. [111]

      VERDOY D, COBA DE LA PEÑA T, REDONDO F J, LUCAS M M, PUEYO J J.  Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress[J]. Plant, Cell & Environment重庆欢乐生肖, 2006, 29(10): 1913-1923.

    112. [112]

      MILLER G, STEIN H, HONIG A, KAPULNIK Y, ZILBERSTEIN A.  Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation[J]. Planta, 2005, 222(1): 70-79. doi:

    113. [113]

      姜义宝, 崔国文, 李红.  干旱胁迫下外源钙对苜蓿抗旱相关生理指标的影响[J]. 草业学报, 2005, 14(5): 32-36. doi:
      JIANG Y B, CUI G W, LI H.  Effects of exogenous calcium on physiological indexes related to drought resistance under drought stress[J]. Acta Prataculturae Sinica, 2005, 14(5): 32-36. doi:

    114. [114]

      朱义, 何池全, 杜玮, 胡一灵, 陈宇.  盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J]. 农业工程学报, 2013, 23(11): 133-137.
      ZHU Y, HE C Q, DU W, HU Y L, CHEN Y.  Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt-stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 23(11): 133-137.

    115. [115]

      SALAHSHOOR F, KAZEMI F.  Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L.[J]. Plant, Soil and Environment, 2016, 62(10): 460-466. doi:

    116. [116]

      JIANG Y, HUANG B.  Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses[J]. Journal of Experimental Botany, 2001, 52(355): 341-349. doi:

    117. [117]

      ZHOU B, GUO Z.  Calcium is involved in the abscisic acid-induced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis[J]. Biologia Plantarum, 2009, 53(1): 63-68. doi:

    118. [118]

      胡化广, 张振铭, 黄亮亮..  结缕草对干旱胁迫的响应[J]. 草原与草坪, 2008, (3): 41-44.
      HU H G, ZHANG Z M, HUANG L L.  Responses of Zoysia japonica to drought stress[J]. Grassland and Turf, 2008, (3): 41-44.

    119. [119]

      XU C, LI X, ZHANG L.  The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions[J]. PLoS One, 2013, 8(7): e68214-. doi:

    120. [120]

      DATNOFF L E.  Silicon in the life and performance of turfgrass[J]. Applied Turfgrass Science, 2005, 2(1): 1-5. doi:

    121. [121]

      董文科, 马晖玲, 马婷燕.  外源硅对逆境胁迫下多年生黑麦草种子萌发和幼苗抗性的影响[J]. 甘肃农业大学学报, 2017, 52(6): 90-96.
      DONG W K, MA H L, MA T Y.  Effects of exogenous silicon on Loium perenne seed germination and seedlings physiological characteristics under stress conditions[J]. Journal of Gansu Agricultural University重庆欢乐生肖, 2017, 52(6): 90-96.

    122. [122]

      HE Y, XIAO H, WANG H, CHEN Y, YU M.  Effect of silicon on chilling-induced changes of solutes, antioxidants, and membrane stability in seashore paspalum turfgrass[J]. Acta Physiologiae Plantarum, 2010, 32(3): 487-494. doi:

    123. [123]

      ESMAEILI S, SALEHI H, ESHGHI S.  Silicon ameliorates the adverse effects of salinity on turfgrass growth and development[J]. Journal of Plant Nutrition, 2015, 38(12): 1885-1901. doi:

    124. [124]

      BAE E J, HONG A, CHOI S M, LEE K S, PARK Y B.  Silicon pretreatment alleviates drought stress and increases antioxidative activity in Kentucky bluegrass[J]. International Turfgrass Society Research Journal, 2017, 13(1): 591-600.

    125. [125]

      ESMAEILI S, SALEHI H.  Kentucky bluegrass (Poa pratensis L.) silicon-treated turfgrass tolerance to short-and long-term salinity condition[J]. Advances in Horticultural Science重庆欢乐生肖, 2016, 30(2): 87-94.

    126. [126]

      张美艳, 刘彦培, 张英俊, 袁福锦, 钟声, 薛世明.  外源硅对铝胁迫下鸭茅形态构建和植株体内铝积累的影响[J]. 西南农业学报, 2016, 30(5): 1137-1144.
      ZHANG M Y, LIU Y P, ZHANG Y J, YUAN F J, ZHONG S, XUE S M.  Effects of silicon on plant morphology and uptake of aluminum in orchardgrass under aluminum stress[J]. Southwest China Journal of Agricultural Sciences, 2016, 30(5): 1137-1144.

    127. [127]

      陈桢雨, 孟丹, 周思敏, 安敏敏, 罗玉明, 杨立明.  气体信号分子调控植物发育和相应逆境胁迫的生理与分子机制[J]. 中国农学通报, 2014, 30(6): 260-267. doi:
      CHEN Z Y, MENG D, ZHOU S M, AN M M, LUO Y M, YANG L M.  Physiological and molecular mechanisms of gas signal molecules regulating plant development and response to stress[J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 260-267. doi:

    128. [128]

      CALDERWOOD A, KOPRIVA S.  Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule[J]. Nitric Oxide重庆欢乐生肖, 2014, 41(18): 72-78.

    129. [129]

      王燕琴. 硫化氢提高紫花苜蓿种子萌发过程中的耐盐性及其一氧化氮的关系. 南京: 南京农业大学硕士学位论文, 2011.
      WANG Y Q. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination and its relationship with nitric oxide. Master Thesis. Nanjing: Nanjing Agricultural University, 2011.

    130. [130]

      SHI H, YE T, CHAN Z.  Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.)[J]. Plant Physiology and Biochemistry, 2013, 71(): 226-234. doi:

    131. [131]

      SHI H, YE T, CHAN Z.  Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.)[J]. Plant Physiology and Biochemistry, 2014, 74(): 99-107. doi:

    132. [132]

      WANG Y, LI L, CUI W, XU S, SHEN W, WANG R.  Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway[J]. Plant and Soil, 2012, 351(): 107-119. doi:

    133. [133]

      谭伊文, 许岳飞, 周禾.  盐胁迫下一氧化氮对高羊茅种子萌发和幼苗生长的影响[J]. 草地学报, 2010, 18(3): 394-398. doi:
      TAN Y W, XU Y F, ZHOU H.  Effects of nitric oxide on seed germination and seedling growth of tall fescue under salt stress[J]. Acta Agrestia Sinica, 2010, 18(3): 394-398. doi:

    134. [134]

      周万海, 冯瑞章, 师尚礼, 寇江涛.  NO对盐胁迫下苜蓿根系生长抑制及氧化损伤的缓解效应[J]. 生态学报, 2015, 35(11): 3606-3614.
      ZHOU W H, FENG R Z, SHI S L, KOU J T.  Nitric oxide protection of alfalfa seedling roots against salt-induced inhibition of growth and oxidative damage[J]. Acta Ecologica Sinica重庆欢乐生肖, 2015, 35(11): 3606-3614.

    135. [135]

      LIU A, FAN J, GITAU M M, CHEN L, FU J.  Nitric oxide involvement in bermudagrass response to salt stress[J]. Journal of the American Society for Horticultural Science, 2016, 141(5): 425-433. doi:

    136. [136]

      高景慧, 母养秀, 张越利, 葛志颂, 闫文, 邵怀梅.  外源NO对渗透胁迫下多年生黑麦草幼苗生长和生理特性的影响[J]. 草地学报, 2011, 19(4): 625-630. doi:
      GAO J H, MU Y X, ZHANG Y L, GE Z S, YANG W, SHAO H M.  Effects of exogenous nitric oxide on the growth and physiological characteristics of perennial ryegrass seedlings under osmotic stress[J]. Acta Agrestia Sinica, 2011, 19(4): 625-630. doi:

    137. [137]

      HATAMZADEH A, MOLAAHMAD NALOUSI A, GHASEMNEZHAD M, BIGLOUEI M H.  The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue[J]. Grass and Forage Science, 2015, 70(3): 538-548. doi:

    138. [138]

      FILIPPOU P, ANTONIOU C, FOTOPOULOS V.  The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants[J]. Free Radical Biology and Medicine, 2013, 56(): 172-183. doi:

    139. [139]

      WANG Q, LIANG X, DONG Y, XU L, ZHANG X, HOU J, FAN Z.  Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass[J]. Plant Growth Regulation, 2013, 69(1): 11-20. doi:

    140. [140]

      XU J, WANG W, YIN H, LIU X, SUN H, MI Q.  Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress[J]. Plant and Soil, 2010, 326(): 321-330. doi:

    141. [141]

      韩毅. 血红素加氧酶/一氧化碳信号系统对汞、镉诱导的紫花苜蓿根部氧化胁迫的调节. 南京: 南京农业大学硕士学位论文, 2008.
      HAN Y. The modulatory role of hemeoxygenase/carbon monoxide signal system in mercury and cadmium-induced oxidative stress in Medicago sativa重庆欢乐生肖 L. Master Thesis. Nanjing: Nanjing Agricultural University, 2008.

    142. [142]

      YONG B, XIE H, LI Y P, ZHANG Y, NIE G, ZHANG X Q, MA X, HUANG L K, YAN Y H, PENG Y.  Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover[J]. Frontiers in Physiology, 2017, 8(): 1107-. doi:

    143. [143]

      戴云. 干旱胁迫及复水条件下外源ALA对高羊茅糖代谢的影响. 南京: 南京农业大学硕士学位论文, 2013.
      DAI Y. Effects of exogenous ALA on carbohydrate metabolism in tall fescue during drought stress and post-drought recovery. Master Thesis. Nanjing: Nanjing Agricultural University, 2013.

    144. [144]

      YANG Z, CHANG Z, SUN L, YU J, HUANG B.  Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass[J]. PloS One, 2014, 9(12): e116283-. doi:

    145. [145]

      林艳艳, 杨雪梅, 杨云贵.  五氨基乙酰丙酸对逆境下草地早熟禾萌发及生长的影响[J]. 草地学报, 2017, 25(4): 782-789. doi:
      LIN Y Y, YANG X M, YANG Y G.  Effects of 5-ALA on seed germination and growth of Poa pratensis under abiotic stress[J]. Acta Agrestia Sinica, 2017, 25(4): 782-789. doi:

    146. [146]

      FU J J, CHU X T, SUN Y F, XU Y F, HU T M.  Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress[J]. Biologia Plantarum, 2016, 60(3): 585-594. doi:

    147. [147]

      樊瑞草. 外源抗坏血酸对盐胁迫下高羊茅生长的影响及调控机理. 南京: 南京农业大学硕士学位论文, 2010.
      重庆欢乐生肖 FAN R C. Study on the effect of ascorbic acid on growth and regulation mechanism of tall fescue under salt stress. Master Thesis. Nanjing: Nanjing Agricultural University, 2010.

    148. [148]

      XU Y, XU Q, HUANG B.  Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea schreb.)[J]. Frontiers in Plant Science重庆欢乐生肖, 2015, 6(): 807-.

    149. [149]

      赵状军, 胡龙兴, 胡涛, 傅金民.  不同品系高羊茅应答高温胁迫的初级代谢产物分析[J]. 草业学报, 2015, 24(3): 58-69. doi:
      ZHAO Z J, HU L X, HU T, FU J M.  Differential metabolic responses of two tall fescue genotypes to heat stress[J]. Acta Prataculturae Sinica, 2015, 24(3): 58-69. doi:

    150. [150]

      HU L, ZHANG Z, XIANG Z, YANG Z.  Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum)[J]. Frontiers in Plant Science, 2016, 7(): 179-.

    1. [1]

      张伟珍古丽君段廷玉 . AM真菌提高植物抗逆性的机制. 草业科学, 2018, 12(3): 491-507. doi: 

    2. [2]

      尚明娟曹骏常智慧 . 污泥对草坪草逆境生理的影响. 草业科学, 2017, 11(8): 1591-1600. doi: 

    3. [3]

       先锋植物类芦抗逆性及其应用. 草业科学, 2017, 11(8): 1601-1610. doi:  重庆欢乐生肖

    4. [4]

      夏方山毛培胜闫慧芳王明亚 . 水杨酸对植物种子及幼苗抗逆性的影响. 草业科学, 2014, 8(7): 1367-1373. doi:  重庆欢乐生肖

    5. [5]

      肖兴艳张雷一刘方姚斌龙健 . 两种土壤改良剂对3种牧草生长及土壤含水量的影响. 草业科学, 2015, 9(11): 1887-1891. doi:  重庆欢乐生肖

    6. [6]

      韩云华王彦荣陶奇波 . 种子激素引发. 草业科学, 2016, 10(12): 2494-2502. doi: 

    7. [7]

      牟琼吴佳海王少青吴静钟理 . 贵州不同生态条件对黔草5号高羊茅生产性能的影响. 草业科学, 2016, 10(8): 1583-1588. doi: 

    8. [8]

      杨海霞徐萌刘宁郭绍霞 . 丛枝菌根真菌对两种草坪草耐盐性的影响. 草业科学, 2014, 8(7): 1261-1268. doi: 

    9. [9]

      景春梅刘慧席琳乔马春晖 . 优质牧草、绿肥草木樨的研究进展. 草业科学, 2014, 8(12): 2308-2315. doi:  重庆欢乐生肖

    10. [10]

      邢强 . 温室环境下适宜草坪草种的筛选评价. 草业科学, 2016, 10(11): 2209-2220. doi: 

    11. [11]

      刘卓成韩烈保 . 基于ArcGIS的中国草坪生态气候区划研究. 草业科学, 2018, 12(5): 1030-1039. doi: 

    12. [12]

      邓衍明叶晓青贾新平梁丽建 . 体细胞突变技术在草坪草种质创新上的最新应用. 草业科学, 2014, 8(9): 1696-1706. doi: 

    13. [13]

      高晨轩南志标 . 我国牧草种带真菌研究进展. 草业科学, 2019, 36(7): 1792-1802. doi:  重庆欢乐生肖

    14. [14]

      石自忠王明利 . 我国草产品贸易及效率分析. 草业科学, 2019, 36(3): 888-897. doi:  重庆欢乐生肖

    15. [15]

      李林株李成云张 帆吕忠蕾 . 延边地区多种野生植物缩合单宁的含量及提取条件的优化. 草业科学, 2014, 8(5): 977-981. doi: 

    16. [16]

      金 雄徐金芳常智慧 . 磷对草坪的影响. 草业科学, 2014, 8(10): 1891-1899. doi:  重庆欢乐生肖

    17. [17]

      谢文刚刘文献张建全王彦荣 . 牧草分子遗传连锁图谱及其应用. 草业科学, 2014, 8(6): 1147-1159. doi: 

    18. [18]

      韩梦梦宋桂龙隋永超 . DMTU对镉胁迫下高羊茅根系的缓解作用. 草业科学, 2020, 37(8): 1488-1496. doi: 

    19. [19]

      孙晓青毛祝新傅华黄德君李倩 . 牧草中脂肪酸及其影响因素. 草业科学, 2014, 8(9): 1774-1780. doi:  重庆欢乐生肖

    20. [20]

      王飞刘林波高天歌高鲤包爱科王锁民 . 转录组学在牧草上的应用进展. 草业科学, 2019, 36(2): 402-413. doi:  重庆欢乐生肖

  • 重庆欢乐生肖

    图 1  重庆欢乐生肖 植物激素和小分子物质在草坪草和牧草逆境应答中的作用。

    Figure 1.  重庆欢乐生肖 Roles of plant hormones and small molecule compounds during the abiotic stress responses of turfgrass and forage

    图 2  植物激素和小分子物质的生物合成及信号传导途径。

    Figure 2.  Biosynthesis and signaling transduction pathways of plant hormones and small molecule compounds.

    重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖
  • <code id='vzdkr'><i id='vzdkr'><q id='vzdkr'><legend id='vzdkr'><pre id='vzdkr'><style id='vzdkr'><acronym id='vzdkr'><i id='vzdkr'><form id='vzdkr'><option id='vzdkr'><center id='vzdkr'></center></option></form></i></acronym></style><tt id='vzdkr'></tt></pre></legend></q></i></code><center id='vzdkr'></center>

      <dd id='vzdkr'></dd>

          <style id='vzdkr'></style><sub id='vzdkr'><dfn id='vzdkr'><abbr id='vzdkr'><big id='vzdkr'><bdo id='vzdkr'></bdo></big></abbr></dfn></sub>
          <dir id='vzdkr'></dir>
      1. 加载中
      2. 图(2)
        计量
        • PDF下载量:  133
        • 文章访问数:  20266
        • HTML全文浏览量:  18699
        文章相关
        • 通讯作者:  产祝龙, zlchan@mail.hzau.edu.cn
        • 收稿日期:  2018-10-09
        • 网络出版日期:  2018-11-05
        • 刊出日期:  2018-12-01
        通讯作者: 陈斌,
        • 1. 

          shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

        1. 本站搜索
        2. 百度学术搜索
        3. 万方数据库搜索
        4. CNKI搜索

        /

        返回文章
        重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖