植物 Plant | 毒害部位 Toxic part of the plant | 有毒成分 Toxic compound | 危害动物 Susceptible animal |
豆科,甘肃棘豆 Leguminosae, Oxytropis kansuensis (Oxy) | 全株有毒 Whole plant is toxic | 吲哚里西啶生物碱苦马豆素 Indolicidine alkaloid bitamonine | 马和绵羊 Horse and sheep |
豆科,披针叶黄华 Leguminosae, Thermopsis lanceolata (The) | 全株有毒 Whole plant is toxic | 黄花碱奎诺里西啶类生物碱 Anthracine quinolidine alkaloid | 各种动物 All animals |
瑞香科,瑞香狼毒 Thymelaeaceae, Stellera chamaejasme (Ste) | 全株有毒 Whole plant is toxic | 异狼毒素黄酮类化合物 Isochamaejasmin flavones | 各种动物 All animals |
菊科,黄帚橐吾 Compositae, Ligularia virgaurea (Lig) | 全株有毒 Whole plant is toxic | 倍半萜和吡咯里西啶生物碱 Sesquiterpene and pyrrolizidine alkaloids | 牛羊 Cattle, Sheep |
龙胆科,麻花艽 Gentianaceae, Gentiana straminea (Gen) | 全株小毒 Whole plant poison | 龙胆苦苷环烯醚帖苷类化合物 Gentiopicroside cycloenoside compounds | 作用小 Weak toxicity effect on all animals |
禾本科,垂穗披碱草 Gramineae, Elymus nutans (Ely) | 无毒 Non toxic | 无毒 Non toxic | 可食 Palatable |

Citation: MA J G, HOU F J, BOWATTE S. Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau. Pratacultural Science, 2019, 36(12): 3033-3040. doi:

青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响
English
Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau
-
Key words:
- alpine meadow /
- grassland degradation /
- toxic plants /
- Elymus nutans /
- soil microbe
-
-
-
[1]
YANG Y H, FANG J Y, TANG Y H, JI C J, ZHENG C Y, HE J S, ZHU B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change BiologyGlobal Change Biology, 2008, 14(7): 1592-1599. doi:
-
[2]
SU X K, WU Y, DONG S K, WEN L, LI Y Y, WANG X X. Effects of grassland degradation and revegetation on carbon and nitrogen storage in the soils of the headwater area nature reserve on the Qinghai-Tibetan Plateau, China[J]. Journal of Mountain ScienceJournal of Mountain Science, 2015, 12(3): 582-591. doi:
-
[3]
DONG S K, WEN L, LI Y Y, WANG L Z, LI X Y. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 2012, 76(6): 2256-. doi:
-
[4]
westbrooks r g, preacher j w. toxic plants of eastern north america. columbia: university of south carolina press, 1989.
-
[5]
PULIDO M, BARRENAGONZALEZ J, BADGERY W. Sustainable grazing[J]. Environmental Science & HealthEnvironmental Science & Health重庆欢乐生肖, 2018, 5(): 42-46.
-
[6]
WEN L, DONG S K, LI YY, SHERMAN R, SHI J J, LIU D M, WANG Y L, MA Y S, ZHU L. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai-Tibet Plateau (QTP), China[J]. Environmental Monitoring and AssessmentEnvironmental Monitoring and Assessment, 2013, 185(10): 8051-8064. doi:
-
[7]
史志诚. 中国草地重要有毒植物. 北京: 中国农业出版社, 1997.
SHI Z C. Important Toxic Plants of China Grassland. Beijing: China Agriculture Press, 1997. -
[8]
ZHAO B Y, LIU Z Y, LU H, WANG Z X, SUN L S. Damage and control of toxic weeds in western grassland of China[J]. Agricultural Sciences in ChinaAgricultural Sciences in China, 2010, 9(10): 1512-1521. doi:
-
[9]
任继周. 西北草原上几种常见的毒草[J]. 畜牧与兽医畜牧与兽医, 1954, (2): 56-60.
REN J Z. Several common toxic plants of the northwest grassland[J]. Animal Husbandry and Veterinary MedicineAnimal Husbandry and Veterinary Medicine, 1954, (2): 56-60. -
[10]
DAVIS T Z, GREEN B T, STEGELMEIER B L, STEPHEN T. Physiological and serum biochemical changes associated with rayless goldenrod (Isocoma pluriflora) poisoning in goats[J]. ToxiconToxicon, 2013, 76(): 247-254. doi:
-
[11]
WU J S, YANG P W, ZHANG X Z, SHEN Z X, YU C Q. Spatial and climatic patterns of the relative abundance of toxic vs. non-toxic plants across the Northern Tibetan Plateau[J]. Environmental Monitoring and AssessmentEnvironmental Monitoring and Assessment, 2015, 187(): 491-. doi:
-
[12]
ZISKA L H, EPSTEIN P R, SCHLESINGER W H. Rising CO2, climate change, and public health: Exploring the links to plant biology[J]. Environmental Health PerspectivesEnvironmental Health Perspectives, 2009, 117(): 155-158. doi:
-
[13]
王迎新, 王召锋, 程云湘, 侯扶江. 浅议毒害草在草地农业生态系统中的作用[J]. 草业科学草业科学, 2014, 31(3): 381-387.
WANG Y X, WANG Z F, CHENG Y X, HOU F J. The roles of toxic and harmful grass in grassland agro-ecosystems[J]. Pratacultural SciencePratacultural Science, 2014, 31(3): 381-387. -
[14]
LI Y Y, DONG S K, LIU S L, WANG X X, WEN L, WU Y. The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau[J]. Plant EcologyPlant Ecology, 2014, 215(8): 809-819. doi:
-
[15]
SUN G, P LUO, WU N, QIU P F, GAO Y H, CHEN H, SHI F S. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China[J]. Soil Biology & BiochemistrySoil Biology & Biochemistry重庆欢乐生肖, 2009, 41(): 86-91.
-
[16]
赵宝玉. 中国天然草地有毒有害植物名录. 北京: 中国农业科学技术出版社, 2016.
重庆欢乐生肖 ZHAO B Y. Directory of Toxic and Injurious Plants in Natural Grassland of China. Beijing: China Agricultural Science and Technology Press, 2016. -
[17]
孙义. 高寒草甸–藏羊放牧系统土草畜互作特征. 兰州: 兰州大学博士学位论文, 2015.
SUN Y. Interaction of soil–herbage–livestock in alpine meadow-Tibetan sheep grazing system, Qinghai-Tibetan Plateau. PhD Thesis. Lanzhou: Lanzhou University, 2015. -
[18]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass carbon[J]. Soil Biology & BiochemistrySoil Biology & Biochemistry, 1987, 19(): 703-707.
-
[19]
GROSSKOPF R, JANSSEN P H, LIESACK W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval[J]. Applied & Environmental MicrobiologyApplied & Environmental Microbiology重庆欢乐生肖, 1998, 64(3): 960-969.
-
[20]
CHU H, NEUFELD J D, WALKER V K, GROGAN P. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 2011, 75(5): 1756-1765. doi:
-
[21]
CHEN X P, ZHU Y G, XIA Y, SHEN J P, HE J Z. Ammonia-oxidizing archaea: Important players in paddy rhizosphere soil?[J]. Environmental MicrobiologyEnvironmental Microbiology, 2008, 10(8): 1978-1987. doi:
-
[22]
THROBCK I N, ENWALL K, JARVIS A, HALLIN S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology EcologyFEMS Microbiology Ecology, 2004, 49(3): 401-417. doi:
-
[23]
ZHOU Z F, ZHENG Y M, SHEN J P. Response of denitrification genes NirS, NirK, and NosZ to irrigation water quality in a Chinese agricultural soil[J]. Environmental Science and Pollution ResearchEnvironmental Science and Pollution Research, 2011, 18(9): 1644-1652. doi:
-
[24]
王文颖, 马永贵, 徐进, 王慧春, 朱锦福, 周华坤. 高寒矮嵩草(Kobresia humilis)草甸植物吸收土壤氮素的多元化途径研究[J]. 中国科学: 地球科学中国科学: 地球科学, 2012, 42(10): 1264-1272.
WANG W Y, MA Y G, XU J, WANG H C, ZHU J F, ZHOU H K. The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau[J]. Science China Earth ScienceScience China Earth Science重庆欢乐生肖, 2012, 42(10): 1264-1272. -
[25]
吴天马, 丁晖, 刘志磊, 徐海根, 卞新民. 外来入侵植物紫茎泽兰对土壤养分的影响[J]. 生态与农村环境学报生态与农村环境学报, 2007, (2): 94-96. doi:
WU T M, DING H, LIU Z L, XU H G, BIAN X M. Effect of a lien invasive plant Eupatorium adenophorum on soil nutrients[J]. Journal of Ecology and Rural EnvironmentJournal of Ecology and Rural Environment, 2007, (2): 94-96. doi: -
[26]
BERENDSE F, BERG B, BOSATTA E. The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystem: A theoretical approach[J]. Canadian Journal of BotanyCanadian Journal of Botany, 1987, 65(): 1116-1120. doi:
-
[27]
VITOUSEK P M, WLAKER L R, WHITEAKER L D, MUELLER D D, MATSON P A. Biological invasion by Myrica faya alters ecosystem development in Hawaii[J]. ScienceScience, 1987, 238(): 802-804. doi:
-
[28]
王发园, 林先贵, 尹睿. 不同施铜水平下接种AM真菌对海州香薷根际pH的影响[J]. 植物营养与肥料学报植物营养与肥料学报, 2006, 12(6): 922-925. doi:
WANG F Y, LIN X G, YIN R. Effect of arbuscular mycorrhizal inoculation on rhizosphere pH of Elsholtzia splendens under different Cu levels[J]. Plant Nutrition and Fertilizer SciencePlant Nutrition and Fertilizer Science, 2006, 12(6): 922-925. doi: -
[29]
郭鸿儒, 崔海燕, 刘权, 燕志强, 金波, 秦波. 瑞香狼毒根系分泌化感物质研究. 中国第六届植物化感作用学术研讨会论文集. 成都: 中国第六届植物化感作用学术研讨会, 2013: 21.
GUO H R, CUI H Y, LIU Q, YAN Z Q, JIN B, QIN B. Studies on allelochemicals secreted by roots of stellera chamaejasme重庆欢乐生肖. // Proceedings in the Sixth Symposium on Allelopathy of Plants in China. Chendu: The Sixth Symposium on Allelopathy of Plants in China, 2013: 21. -
[30]
沈慧敏, 邓建梅, 董强, 杨顺义. 甘肃天然草地有毒植物黄花棘豆(Oxytropis ochrocephala)化感作用研究.中国第四届植物化感作用学术研讨会论文集. 青岛: 中国第四届植物化感作用学术研讨会, 2009: 42.
SHEN H M, DENG J M, DONG Q, YANG S Y. Studies on allelopathy of Oxytropis ochrocephala重庆欢乐生肖, a toxic plant of natural grassland in Gansu Province. // Proceedings in the Fourth Symposium on Allelopathy of Plants in China. Qingdao: The Fourth Symposium on Allelopathy of Plants in China, 2009: 42. -
[31]
安冬云, 韩蕾, 武菊英, 陈洁, 姜圆圆, 刘洋, 王庆海. 瑞香狼毒对农牧交错带草原土壤特性的影响[J]. 草地学报草地学报, 2016, (3): 559-567. doi:
AN D Y, HAN L, WU J Y, CHEN J, JIANG Y Y, LIU Y, WANG Q H. Effect of Stellera chamaejasme on soil properties of grassland in farming-pastoral zone in north China[J]. Acta Agrestia SinicaActa Agrestia Sinica, 2016, (3): 559-567. doi: -
[32]
赵伟. 土壤微生物活菌数与生物量的关系研究[J]. 安徽农业科学安徽农业科学, 2005, 33(12): 2285-. doi:
ZHAO W. Study on the relationship between soil microbial biomass and living count[J]. Journal of Anhui Agriculture and ScienceJournal of Anhui Agriculture and Science, 2005, 33(12): 2285-. doi: -
[33]
孙天舒. 草地瑞香狼毒种群扩散对土壤养分有效性的影响.沈阳: 东北大学博士学位论文, 2013.
SUN T S. The effect of dispersion of Stellera chemaejasme L重庆欢乐生肖. population on soil nutrient availability of grassland. PhD Thesis. Shenyang: Northeastern University, 2013. -
[34]
张琪. 高寒草原区不同植被恢复方式对土壤微生物的影响研究.兰州: 兰州大学博士学位论文, 2015.
ZHANG Q. Effects of different vegetation restoration methods on soil microorganisms in alpine grassland areas. PhD Thesis. Lanzhou: Lanzhou University, 2015. -
[35]
SAGGAR S M, CINTOSH P D, HEDLEY C B, KNICKER H. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.)[J]. Biology and Fertility of SoilsBiology and Fertility of Soils, 1999, 30(): 232-238. doi:
-
[36]
SUBBARAO G V, RONDON M, ITO O, ISHIKAWA T, RAO I M, NAKAHARA K, LASCANO C, BERRY W L. Biological nitrification inhibition (BNI): Is it a widespread phenomenon?[J]. Plant and SoilPlant and Soil重庆欢乐生肖, 2007, 294(1/2): 5-18.
-
[37]
DASSONVILLE N, GUILLAUMAUD N, PIOLA F, MEERTS P, POLY F. Niche construction by the invasive Asian knotweeds (species complex Fallopia): Impact on activity, abundance and community structure of denitrifiers and nitrifiers[J]. Biological InvasionsBiological Invasions重庆欢乐生肖, 2010, 13(): 1115-1133.
-
[38]
HAWKES C V, WREN I F, HERMAN D J, FIRESTONE M K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community[J]. Ecology LettersEcology Letters, 2005, 8(): 976-985. doi:
-
[39]
朱慧, 马瑞君, 吴双桃, 李云, 陈丹生, 蔡龙飞. 杂草五爪金龙对其入侵地土壤酶活性与微生物群落的影响[J]. 韩山师范学院学报韩山师范学院学报, 2012, 33(3): 34-39.
ZHU H, MA R J, WU S T, LI Y, CHEN D S, CAI L F. Impacts of invasive weed Ipomaea cairica on the soil enzyme activity and microbial community[J]. Journal of Hanshan Normal UniversityJournal of Hanshan Normal University, 2012, 33(3): 34-39.
-
[1]
-
重庆欢乐生肖
图 1 重庆欢乐生肖 有毒和无毒植物对土壤特性的影响
Figure 1. 重庆欢乐生肖 Effects of toxic and non-toxic plants on soil properties
图 2 有毒和无毒植物对土壤微生物基因丰度影响
Figure 2. 重庆欢乐生肖 Effects of toxic and non-toxic plants on soil microbial gene abundance
图 3 植物与土壤理化性质和微生物丰度相关性分析
Figure 3. Correlation analysis of plant and soil physicochemical properties and microbial abundance
表 1 5种有毒和1种无毒植物特征
Table 1. Details of five toxic and one non-toxic plant species used in this experiment
下载: 导出CSV
表 2 引物信息及反应条件
Table 2. qPCR primer details and thermal conditions
基因
Gene引物
Primer碱基序列
Sequence (5′–3′)热循环条件
Thermal cycle循环数
Number of cycles参考文献
Reference16S rDNA 515F GTGCCAGCMGCCGCGG 95 ℃/15 s, 60 ℃/30 s 35 [19] 907R CCGTCAATTCMTTTRAGTTT 72 ℃/30 s, 80 ℃/30 s 18S rDNA FF390 CGATAACGAACGAGACCT 95 ℃/15 s, 60 ℃/30 s, 72 ℃/1 min, 95 ℃/15 s 35 [20] FR1 AICCATTCAATCGGTAIT 70 ℃/15 s, 95 ℃/15 s Bacterial amoA gene amoA-1F GGGGTTTCTACTGGTGGT 94 ℃/60 s, 55 ℃/45 s 40 [21] amoA-2R CCCCTCGGGAAAGCCTTCTTCTTC 72 ℃/60 s nirS cd3af (GT(C/G))AACGT(C/G)AAGGA(A/G)AC(C/G)GG) 94 ℃/60 s 40 [22] R3cd GA(C/G)TTCGG(A/G)TG(C/G)GTCTTGA 57 ℃/60 s, 72 ℃/60 s [23] nosZ nosZ-F CG(C/T)TGTTC(A/C)TCGACAGCCAG 94 ℃/4 min, 94 ℃/30 s 40 [22] nosZ1622R CGC(G/A)A(C/G)GGCAA(G/C)AAGGT(G/C)CG 56 ℃/60 s, 72 ℃/60 s, 72 ℃/5 min 下载: 导出CSV
-