样地 Sampling site | 处理 Treatment | 经度 Longitude | 纬度 Latitude | 优势植物 Dominant plant species |
封育草地(EG) Enclosed grassland | 封育14年 14-year enclosed | 107°14' E | 37°53' N | 猪毛蒿(Artemisia scoparia)、白草(Pennisetum centrasiaticum)、赖草(Leymus secalimus)、虫实(Corispermum hyssopifolium) |
放牧草地(GG) Grazing grassland | 适度放牧 Moderate grazing | 107°18' E | 37°52' N | 刺蓬(Salsola ruthenica)、猪毛蒿(Artemisia scoparia)、白草(Pennisetum centrasiaticum)、骆驼蓬(Peganum harmala) |
3年灌丛(SY3) 3-year shrubs | 间距6 m Planting space: 6 m | 107°21' E | 37°50' N | 猪毛蒿(Artemisia scoparia)、赖草(Leymus secalimus)、牛枝子(Lespedeza potaninii)、柠条(Caragana korshinskii) |
12年灌丛(SY12) 12-year shrubs | 间距6 m Planting space: 6 m | 107°20' E | 37°51' N | 牛枝子(Lespedeza potaninii)、猪毛蒿(Artemisia scoparia)、 短花针茅(Stipa breviflora)、白草(Pennisetum centrasiaticum)、柠条(Caragana korshinskii) |
22年灌丛(SY22) 22-year shrubs | 间距6 m Planting space: 6 m | 107°17' E | 37°51' N | 牛枝子(Lespedeza potaninii)、猪毛蒿(Artemisia scoparia)、 柠条(Caragana korshinskii) |
40米间距(SI40) Shrub interval: 40 m | 1990年种植 Planting in 1990 | 107°21' E | 37°55' N | 猪毛蒿(Artemisia scoparia)、牛枝子(Lespedeza potaninii)、 柠条(Caragana korshinskii)、沙生针茅(Stipa glareosa) |
6米间距(SI6) Shrub interval: 6 m | 1994年种植 Planting in 1994 | 107°17' E | 37°51' N | 牛枝子(Lespedeza potaninii)、猪毛蒿(Artemisia scoparia)、 柠条(Caragana korshinskii) |
2米间距(SI2) Shrub interval: 2 m | 1992年种植 Planting in 1992 | 107°17' E | 37°50' N | 猪毛蒿(Artemisia scoparia)、白草(Pennisetum centrasiaticum)、 柠条(Caragana korshinskii) |

Citation: GUO T D, ZHAO Y N, ZHOU Y R, WANG H M. Responses of soil respiration to shrub introduction in the desert steppe of the eastern Ningxia. Pratacultural Science, 2019, 36(12): 3052-3064. doi:

宁夏东部荒漠草原灌丛引入过程中土壤呼吸响应特征
English
Responses of soil respiration to shrub introduction in the desert steppe of the eastern Ningxia
-
-
-
[1]
XIA Y, MOORE D I, COLLINS S L, MULDAVIN E H. Aboveground production and species richness of annuals in Chihuahuan desert grassland and shrubland plant communities[J]. Journal of Arid EnvironmentsJournal of Arid Environments, 2010, 74(3): 378-385. doi:
-
[2]
SCOTT R L, HUXMAN T E, WILIAMS D G, GOODRICH D C. Ecohydrological impacts of woody-plant encroachment: Seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment[J]. Global Change BiologyGlobal Change Biology, 2010, 12(2): 311-324.
-
[3]
BROWNING D M, FRANKLIN J, ARCHER S R, GILLAN J K, GUERTIN D P. Spatial patterns of grassland-shrubland state transitions: A 74-year record on grazed and protected areas[J]. Ecological ApplicationsEcological Applications, 2016, 24(6): 1421-1433.
-
[4]
RATAJCZAK Z, NIPPERT J B, OCHELTREE T W. Abrupt transition of mesic grassland to shrubland: Evidence for thresholds, alternative attractors, and regime shifts[J]. EcologyEcology, 2014, 95(9): 2633-2645. doi:
-
[5]
CAQUET B, GRANDCOURT A D, EPRON D, KINANA A, SAINT ANDRÉ L, NOUVELLON Y. Soil carbon balance in a tropical grassland: Estimation of soil respiration and its partitioning using a semi-empirical model[J]. Agricultural & Forest MeteorologyAgricultural & Forest Meteorology重庆欢乐生肖, 2012, 158-159(2): 71-79.
-
[6]
DAVID J E, MATTHEW A B, FERNANDO T M, ERIN R, JAMES F R, WALTER G W. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis[J]. Ecology LettersEcology Letters, 2011, 14(7): 709-722. doi:
-
[7]
WANG W, FANG J Y. Soil respiration and human effects on global grasslands[J]. Global and Planetary ChangeGlobal and Planetary Change, 2009, 67(1/2): 20-28. doi:
-
[8]
YAN J X, HAO Z, LI J J, LI H J, DING G W. Soil respiration characteristics in three shrublands along an elevation gradient in a semiarid loess plateau mountain area[J]. Communications in Soil Science and Plant AnalysisCommunications in Soil Science and Plant Analysis, 2017, 48(9): 1-12.
-
[9]
ZAIMENKO N V, DIDYK N P, PAVLIUCHENKO N A, IVANYTSKA B О, KHARYTONOVA I P, ROSITSKA N V. Natural silicates mixed with organic fertilizers enhance corn adaptation to salt stress and improve physical characteristics of sandy soil[J]. Journal of Crop ImprovementJournal of Crop Improvement, 2018, 32(2): 188-207. doi:
-
[10]
CABLE J M, BARRON-GAFFORD G, OGLE K, PAVAO-ZUCKERMAN M, SCOTT R L, WILLIAMS D G, HUXMAN T E. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture[J]. Journal of Geophysical Research BiogeosciencesJournal of Geophysical Research Biogeosciences, 2012, 117(G1): 230-230.
-
[11]
FELTON A J, KNAPP A K, SMITH M D. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation[J]. OecologiaOecologia, 2019, 189(3): 565-576. doi:
-
[12]
CHEN S T, ZOU J W, HU Z H, CHEN H S, LU Y Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data[J]. Agricultural and Forest MeteorologyAgricultural and Forest Meteorology重庆欢乐生肖, 2014, 198-199(8): 335-346.
-
[13]
BRYE K R, MCMULLEN R L, SILVEIRA M L, MOTSCHEBACHER J M D, SMITH, S F, GBUR E E, HELTON M L. Environmental controls on soil respiration across a southern climate gradient: A meta-analysis[J]. Geoderma RegionalGeoderma Regional, 2016, 7(2): 110-119. doi:
-
[14]
马千虎, 周玉蓉, 徐金鹏, 陆琪, 王红梅. 宁夏东部荒漠草原不同植被恢复模式的土壤响应特征[J]. 中国草地学报中国草地学报, 2018, 40(5): 50-56.
MA Q H, ZHOU Y R, XU J P, LU Q, WANG H M. Response of soil to different vegetation restorations in desert steppe in eastern Ningxia[J]. Chinese Journal of GrasslandChinese Journal of Grassland, 2018, 40(5): 50-56. -
[15]
王冠琪, 张克斌, 王志述. 不同封育条件下荒漠草原生态系统健康评价[J]. 中国水土保持科学中国水土保持科学, 2014, 12(2): 40-46. doi:
WANG G Q, ZHANG K B, WANG Z S. Desert grassland ecosystem health evaluation under different fenced enclosure conditions[J]. Science of Soil and Water ConservationScience of Soil and Water Conservation, 2014, 12(2): 40-46. doi: -
[16]
王迎新, 陈先江, 娄珊宁. 草地灌丛化入侵: 过程、机制和效应[J]. 草业学报草业学报, 2018, 27(5): 219-227. doi:
WANG Y X, CHEN X J, LOU S N. Woody-plant encroachment in grasslands: A review of mechanisms and aftereffects[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2018, 27(5): 219-227. doi: -
[17]
赵亚楠, 周玉蓉, 王红梅. 宁夏东部荒漠草原灌丛引入下土壤水分空间异质性[J]. 应用生态学报应用生态学报, 2018, 29(11): 3577-3586.
ZHAO Y N, ZHOU Y R, WANG H M. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinskii) in desert grassland of the eastern Ningxia[J]. Chinese Journal of Applied EcologyChinese Journal of Applied Ecology重庆欢乐生肖, 2018, 29(11): 3577-3586. -
[18]
鲍士旦. 土壤农化分析: 第三版. 北京: 中国农业出版社, 2000.
BAO S D. Analysis of Chemical Soil. Third Edition. Beijing: China Agricultural Publishing Press, 2000. -
[19]
姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006.
YAO H Y, HUANG C Y. Soil Microbial Ecology and Its Experimental Technology. Beijing: Science Press, 2006. -
[20]
温仲明, 焦锋, 卜耀军, 杨勤科. 植被恢复重建对环境影响的研究进展[J]. 西北林学院学报西北林学院学报, 2005, 20(1): 10-15. doi:
WEN Z M, JIAO F, BU Y J, YANG Q K. Advances in the researches of impact of revegetation on environment[J]. Journal of Northwest Forestry UniversityJournal of Northwest Forestry University, 2005, 20(1): 10-15. doi: -
[21]
潘占兵, 李生宝, 郭永忠. 不同种植密度人工柠条林对土壤水分的影响[J]. 水土保持研究水土保持研究, 2004, 11(3): 265-267. doi:
PAN Z B, LI S B, GUO Y Z. Effect of planting density of Caragana intermedia on soil moisture[J]. Soil and water Conservation StudiesSoil and water Conservation Studies, 2004, 11(3): 265-267. doi: -
[22]
ZHANG Y J, GUO S L, LIU Q F, JIANG J S, WANG R, LI N N. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau[J]. Ecological EngineeringEcological Engineering, 2015, 74(10): 196-205.
-
[23]
韩广轩, 周广胜. 土壤呼吸作用时空动态变化及其影响机制研究与展望[J]. 植物生态学报植物生态学报, 2009, 33(1): 197-205. doi:
HAN G X, ZHOU G S. Review of spatial and temporal variations of soil respiration and driving mechanisms[J]. Plant EcologyPlant Ecology, 2009, 33(1): 197-205. doi: -
[24]
YING Z X, LIAO J B, LIU Y J, WANG S C, LU H, MA L, CHEN D D, LI Z Q. Modelling tree-grass coexistence in water-limited ecosystems[J]. Ecological ModellingEcological Modelling, 2017, 360(): 387-398. doi:
-
[25]
MCCULLEY R L, ARCHER S R, BOUTTON T W, ZUBERER F M. Soil respiration and nutrient cycling in wooded communities developing in grassland[J]. EcologyEcology, 2004, 85(10): 2804-2817. doi:
-
[26]
LIN H. Connecting ecohydrology and hydropedology in desert shrubs: Stemflow as a source of preferential flow in soils[J]. Hydrology & Earth System SciencesHydrology & Earth System Sciences重庆欢乐生肖, 2009, 13(7): 1133-1144.
-
[27]
张艳如, 陈秋文, 孙美美, 时伟宇, 杜盛. 黄土丘陵区4种植被类型土壤呼吸季节及年际变化[J]. 应用与环境生物学报应用与环境生物学报, 2018, 24(4): 729-734.
ZHANG Y R, CHEN Q W, SUN M M, SHI W Y, DU S. Seasonal and interannual variation of soil respiration in four vegetation types in the loess hilly region[J]. Chinese Journal of Applied and Environmental BiologyChinese Journal of Applied and Environmental Biology重庆欢乐生肖, 2018, 24(4): 729-734. -
[28]
NGUYEN T T, CAVAGNARO T R, NGO H T T, Marschner P. Soil respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue-influence of interval between residue additions[J]. Soil Biology and BiochemistrySoil Biology and Biochemistry, 2016, 95(12): 189-197.
-
[29]
SCHLESINGER W H, RAIKES J A, CROSS H A F. On the spatial pattern of soil nutrients in desert eco-systems[J]. EcologyEcology, 1996, 77(2): 364-374.
-
[30]
JACKSON R B, BANNER J L, ESTEBAN G, POCKMAN W T, WALL D H. Ecosystem carbon loss with woody plant invasion of grasslands[J]. NatureNature, 2002, 418(): 623-626. doi:
-
[31]
陈鸿洋, 尚振艳, 傅华, 张宝林, 张斯莲, 牛得草. 荒漠区不同大小灌丛周围土壤微生物生物量及活性特征[J]. 草业学报草业学报, 2015, 24(2): 70-76. doi:
CHEN H Y, SHANG Z Y, FU H, ZHANG B L, ZHANG S L, NIU D C. Soil microbial biomass and activity under desert shrub canopies[J]. Acta Prataculturae SinicaActa Prataculturae Sinica, 2015, 24(2): 70-76. doi: -
[32]
EISENLORD S D, FREEDMAN Z, ZAK D R, XUE K, HE Z, ZHOU J. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition[J]. Applied and Environmental MicrobiologyApplied and Environmental Microbiology, 2013, 79(4): 1191-1199. doi:
-
[33]
熊莉, 徐振锋, 杨万勤, 殷睿, 唐仕姗, 王滨, 徐李亚, 常晨晖. 川西亚高山粗枝云杉人工林地上凋落物对土壤呼吸的贡献[J]. 生态学报生态学报, 2015, 35(14): 4678-4686.
XIONG L, XU Z F, YANG W Q, YIN R, TANG S S, WANG B, XU L Y, CHANG C H. Aboveground litter contribution to soil respiration in a subalpine dragon spruce plantation of western Sichuan[J]. Acta Ecologica SinicaActa Ecologica Sinica重庆欢乐生肖, 2015, 35(14): 4678-4686. -
[34]
HIBBARD K A, ARCHER S, SCHIMEL D S, VALENTINE D W. Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna[J]. EcologyEcology, 2001, 82(7): 1999-2011. doi:
-
[35]
吴倩倩. 荒漠地区锦鸡儿属植物联合细菌空间分布特征及其促生特性研究. 兰州: 兰州大学硕士学位论文, 2017.
WU Q Q. The spatial distribution and function of piant-associated bacteria from Caragana重庆欢乐生肖 Fabr. in desert areas. Master Thesis. Lanzhou: Lanzhou University, 2017. -
[36]
熊小刚, 韩兴国. 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布[J]. 生态学报生态学报, 2004, 25(7): 1678-1683.
XIONG X G, HAN X G. Spatial heterogeneity in soil carbon and nitrogen resources caused by Caragana microphylla in the thicketization of semiarid grassland, Inner Mongolia[J]. Acta Ecologica SinicaActa Ecologica Sinica重庆欢乐生肖, 2004, 25(7): 1678-1683. -
[37]
THIESSEN S, GLEIXNER G, WUTZLER T, REICHSTEIN M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass: An incubation study[J]. Soil Biology and BiochemistrySoil Biology and Biochemistry, 2013, 57(10): 739-748.
-
[38]
王德凯, 李颖, 王跃棠, 梅续芳, 解李娜, 李清芳, 马成仓. 荒漠草原中间锦鸡儿灌丛的土壤微生物多样性[J]. 天津师范大学学报(自然科学版)天津师范大学学报(自然科学版), 2018, 38(4): 43-49.
WANG D K, LI Y, WANG Y T, MEI X F, XIE L N, LI Q F, MA C C. Soil microbial community diversity of Caragana intermedia shrubs in the desert steppe[J]. Journal of Tianjin Normal University (Natural Science Edition)Journal of Tianjin Normal University (Natural Science Edition)重庆欢乐生肖, 2018, 38(4): 43-49. -
[39]
OCHOA-HUESO R, COLLINS S L, DELGADO-BAQUERIZO M, HAMONTS K, POCKMAN W T, SINSABAUGH R L, SMITH M D, KNAPP A K, POWER S A. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents[J]. Global Change BiologyGlobal Change Biology, 2018, 24(7): 2818-2827. doi:
-
[40]
王国兵, 郝岩松, 王兵, 阮宏华. 土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J]. 北京林业大学学报北京林业大学学报, 2006, 14(S2): 73-79.
WANG G B, HAO Y S, WANG B, RUAN H H. Influence of land-use change on soil respiration and soil microbial biomass[J]. Journal of Beijing Forestry UniversityJournal of Beijing Forestry University, 2006, 14(S2): 73-79.
-
[1]
-
重庆欢乐生肖
图 1 重庆欢乐生肖 盐池县2017年日气温变化与1987–2017年月均及当年各月降水量分布
Figure 1. The change of daily temperature in 2017 and the distribution patterns of monthly precipitation from 1987 to 2017 and every month in 2017 in Yanchi County
图 2 灌丛引入过程土壤含水量垂直特征
Figure 2. 重庆欢乐生肖 Vertical characteristics of soil’s moisture content during shrub introduction
图 4 灌丛引入过程土壤呼吸季节动态变化
Figure 4. 重庆欢乐生肖 Seasonal dynamics of soil respiration during shrub introduction
图 6 重庆欢乐生肖 灌丛引入过程土壤微生物数量特征
Figure 6. 重庆欢乐生肖 Quantitative characteristics of soil microorganisms during shrub introduction
图 7 重庆欢乐生肖 灌丛引入过程土壤微生物量碳及呼吸熵变化
Figure 7. 重庆欢乐生肖 Changes of soil microbial biomass carbon and respiratory quotients during shrub introduction
表 1 重庆欢乐生肖 样地基本情况
Table 1. 重庆欢乐生肖 description of the sampling sites
下载: 导出CSV
表 2 重庆欢乐生肖 草原–放牧–不同年限灌丛引入过程土壤有机碳、全氮变化
Table 2. Soil organic carbon and total nitrogen during grassland–grazing–different shrub years
项目 Item 土层 Soil layer/cm 草原–放牧–不同年限 Grassland – grazing – different shrub years EG GG SY3 SY12 SY22 有机碳
Soil organic carbon/(g·kg–1)0 – 20 1.92 ± 0.11Bb 3.08 ± 0.10Aa 3.33 ± 0.30Ba 2.95 ± 0.21Aa 3.53 ± 0.10Ba 20 – 40 4.80 ± 0.99Aa 2.61 ± 0.41Ab 3.75 ± 0.28ABab 3.04 ± 0.04Aab 5.12 ± 0.38Aa 40 – 60 3.30 ± 0.71ABbc 1.81 ± 0.08Bc 3.47 ± 0.17Bb 2.30 ± 0.31Abc 5.18 ± 0.24Aa 60 – 80 2.81 ± 0.21Bb 1.91 ± 0.17Bc 4.15 ± 0.18Aa 3.45 ± 0.27Aab 2.84 ± 0.25Ab 80 – 100 1.87 ± 0.35Bbc 1.09 ± 0.11Cc 3.19 ± 0.27Ba 2.86 ± 0.47Aab 2.47 ± 0.11Aab 全氮
Total
nitrogen/(g·kg–1)0 – 20 0.42 ± 0.06ABa 0.29 ± 0.03Aa 0.28 ± 0.06Aa 0.28 ± 0.07Aa 0.42 ± 0.03Aa 20 – 40 0.69 ± 0.14Aa 0.23 ± 0.07Ab 0.27 ± 0.01Ab 0.45 ± 0.06Aab 0.52 ± 0.08Aab 40 – 60 0.43 ± 0.03ABb 0.32 ± 0.03Abc 0.24 ± 0.01Ac 0.24 ± 0.04Ac 0.56 ± 0.01Aa 60 – 80 0.53 ± 0.08ABa 0.21 ± 0.03Ab 0.29 ± 0.06Ab 0.30 ± 0.04Ab 0.60 ± 0.06Aa 80 – 100 0.24 ± 0.04Bab 0.19 ± 0.06Ab 0.31 ± 0.06Aab 0.28 ± 0.08Aab 0.45 ± 0.06Aa 同列不同大写字母表示同一样地不同土层间差异显著(P < 0.05),同行不同小写字母表示同一土层不同样地间差异显著(P < 0.05)。表3同。
Different capital letters indicate significant difference among different layers in each sample plots at the 0.05 level, and different lowercase letters indicate significant difference among all sample plots of the same layer at the 0.05 level; similarly representations are present in Table 3.下载: 导出CSV
表 3 草原–放牧–不同间距灌丛引入过程土壤有机碳和全氮变化
Table 3. 重庆欢乐生肖 Soil organic carbon and total nitrogen during grassland – grazing – different shrub intervals
项目 Item 土层 Soil layer/cm 草原–放牧–不同间距 Grassland – grazing – different shrub intervals EG GG SI40 SI6 SI2 有机碳
Soil organic
carbon/(g·kg–1)0 – 20 1.92 ± 0.11Bc 3.08 ± 0.10Ab 3.61 ± 0.14BCa 3.53 ± 0.10Bab 3.19 ± 0.13Aab 20 – 40 4.80 ± 0.99Aab 2.61 ± 0.41Ac 4.19 ± 0.24ABabc 5.12 ± 0.38Aa 2.84 ± 0.20Bbc 40 – 60 3.30 ± 0.71ABbc 1.81 ± 0.08Bc 4.79 ± 0.35Aab 5.18 ± 0.24Aa 2.55 ± 0.11Cc 60 – 80 2.81 ± 0.21Ba 1.91 ± 0.17Bb 3.21 ± 0.25CDa 2.84 ± 0.25BCa 3.01 ± 0.18Aa 80 – 100 1.87 ± 0.35Bab 1.09 ± 0.11Cb 2.63 ± 0.16Da 2.47 ± 0.11Ca 2.67 ± 0.17BCa 全氮
Total
nitrogen/(g·kg–1)0 – 20 0.42 ± 0.06ABa 0.29 ± 0.03Aab 0.27 ± 0.03Ab 0.42 ± 0.03Aa 0.35 ± 0.01Aab 20 – 40 0.69 ± 0.14Aa 0.23 ± 0.07Ab 0.35 ± 0.07Aab 0.52 ± 0.08Aab 0.26 ± 0.07Ab 40 – 60 0.43 ± 0.03ABb 0.32 ± 0.03Ab 0.34 ± 0.04Ab 0.56 ± 0.01Aa 0.21 ± 0.01Ac 60 – 80 0.53 ± 0.08ABab 0.21 ± 0.03Ac 0.24 ± 0.03Ac 0.60 ± 0.06Aa 0.29 ± 0.06Abc 80 – 100 0.24 ± 0.04Ba 0.19 ± 0.06Aa 0.25 ± 0.08Aa 0.45 ± 0.06Aa 0.25 ± 0.03Aa 下载: 导出CSV
表 4 灌丛引入土壤呼吸与土壤水分、有机碳、全氮及土壤微生物的相关分析
Table 4. 重庆欢乐生肖 Correlation analysis of soil respiration, soil moisture, organic carbon, total nitrogen, and soil microorganism under different shrub introduction conditions
项目 Item 土壤呼吸 Soil respiration r P 0 – 10 cm土壤水分 0 – 10 cm soil moisture 0.372 0.003** 0 – 20 cm土壤有机碳 0 – 20 cm soil organic carbon –0.378 0.148 0 – 20 cm土壤全氮 0 – 20 cm soil total nitrogen –0.358 0.173 放线菌 Soil actinomycetes –0.619 0.011* 真菌 Soil fungus –0.238 0.374 细菌 Soil bacteria –0.323 0.223 微生物生物量碳 Soil microbial carbon 0.046 0.866 *表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。
* and ** indicate significant correlation at 0.05 and 0.01 levels, respectively.下载: 导出CSV
-