重庆欢乐生肖

欢迎访问 草业科学,今天是

重庆欢乐生肖neishengzhenjunhecongzhijungenzhenjunhuzuoduizuimacaoyoumiaoshengzhanghegenaixingdeyingxiang

赵振锐 钟睿 张兴旭

引用本文: 赵振锐,钟睿,张兴旭. 内生真菌和丛枝菌根真菌互作对醉马草幼苗生长和镉耐性的影响. 草业科学, 2020, 37(3): 432-443 doi: shu
Citation:  ZHAO Z R, ZHONG R, ZHANG X X. Effects of interaction of and arbuscular mycorrhizal fungi on the seedling growth and cadmium (Cd) tolerance of . Pratacultural Science, 2020, 37(3): 432-443 doi: shu

内生真菌和丛枝菌根真菌互作对醉马草幼苗生长和镉耐性的影响

    作者简介: 赵振锐(1998-),男,山西文水人,在读本科生,研究方向为禾草内生真菌学。E-mail: .cn;
    通讯作者: 张兴旭, .cn
摘要: 本研究通过接种土壤从枝菌根(arbuscular mycorrhizal, AM)真菌孢子,探讨了在温室盆栽条件下,甘肃内生真菌(Epichloë gansuensis)在不同重金属镉(Cd2+)离子胁迫下对醉马草(Achnatherum inebrians)根系AM真菌侵染率的影响,以及内生真菌、Cd2+和AM真菌三者互作对醉马草幼苗生长的影响。结果表明,Cd2+和内生真菌互作对醉马草菌根侵染率无显著(P > 0.05)影响,菌根侵染率随着Cd2+浓度的增加呈现先升后降的趋势,在高浓度Cd2+ (0.9 mmol·L–1)条件下,内生真菌侵染(endophyte-infected, EI)的醉马草植株菌根侵染率显著(P < 0.05)高于不带菌(endophyte-free, EF)的植株。低浓度Cd2+ (0.3 mmol·L–1)显著(P < 0.05)促进了醉马草的生长,而高浓度Cd2+ (0.9 mmol·L–1)条件下显著(P < 0.05)抑制了醉马草的生长;内生真菌在高浓度Cd2+ (0.9 mmol·L–1)胁迫条件下能够减轻其对醉马草的伤害;接种AM真菌显著(P < 0.05)促进醉马草地上部分生长的同时显著(P < 0.05)抑制了其根系的生长;三者互作显著(P < 0.05)促进醉马草叶绿素含量和地上鲜重,但显著(P < 0.05)抑制了醉马草根长。以上结果表明,内生真菌和Cd2+均能影响AM真菌对醉马草根系的侵染,但二者无互作效应,内生真菌、AM真菌和Cd2+三者互作会影响醉马草幼苗地上和地下生长。

English

    1. [1]

      MYRIAM S Z, MARI D G, MARIA L T, MARIA P B.  Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana[J]. Plant Science, 2007, 173(): 190-197. doi:

    2. [2]

      张芳, 方溪, 张丽静.  草类对重金属胁迫的生理生化响应机制[J]. 草业科学, 2012, 29(4): 534-541.
      ZHANG F, FANG X, ZHANG L J.  Response of physiology and biochemistry of grasses to heavy metal stress[J]. Pratacultural Science, 2012, 29(4): 534-541.

    3. [3]

      ZHANG F Q, ZHANG H X, WANG G P, XU L L, SHEN Z G.  Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes[J]. Journal of Hazardous Materials, 2009, 168(): 76-84. doi:

    4. [4]

      WONG M H.  Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils[J]. Chemosphere, 2003, 50(): 775-800. doi:

    5. [5]

      GISBERT C, CLEMENTE R, NAVARRO-AVINO J, CARLOS B, ALFONSO G, RAMON S, DAVID J W, BERNAL M P.  Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain[J]. Environmental and Experimental Botany, 2006, 56(1): 19-27. doi:

    6. [6]

      MUHAMMAD D, CHEN F, ZHAO J, ZHANG G P, WU F B.  Comparison of EDTA and citric acidenhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia[J]. International Journal of Phytoremediation, 2009, 11(6): 558-574. doi:

    7. [7]

      BARCELO J, POSCHENRIEDER C.  Plant water relations as affected by heavy metal stress: A review[J]. Journal of Plant Nutrition, 1990, 13(1): 1-37. doi:

    8. [8]

      ZHANG X X, FAN X M, LI C J, NAN Z B.  Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte[J]. Plant Growth Regulation, 2010, 60(2): 91-97. doi:

    9. [9]

      ZHANG X X, LI C J, NAN Z B.  Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte[J]. Science China Life Sciences, 2012, 55(9): 793-799. doi:

    10. [10]

      赵毅, 于翠梅, 杨柳, 马莲菊, 谢甫绨.  野生大豆和不同栽培大豆品种在镉胁迫下种子萌发及幼苗生长的差异[J]. 大豆科学, 2019, 38(2): 267-273.
      ZHAO Y, YU C M, YANG L, MA L J, XIE F T.  Differences of cadmium stress on seed germination and seedling growth in the wild soybean and cultivated soybeans[J]. Soybean Science, 2019, 38(2): 267-273.

    11. [11]

      smith s e, read d j. mycorrhizal symbiosis. new york: academic press, 2008.

    12. [12]

      霍鸿巍. 旱稻/大豆间作及形成丛枝菌根促进作物氮磷吸收的效应. 南京: 南京农业大学硕士学位论文, 2016.
      HUO H W. Effect of upland rice/soybean intercropping management and arbuscular mycorrhizal colonization on nitrogen and phosphorus absorption. Master Thesis. Nanjing: Nanjing Agricultural University, 2016.

    13. [13]

      AUGÉ R M.  Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001, 11(1): 3-42. doi:

    14. [14]

      徐雅梅, 褚希彤, 吴叶, 苗彦军, 许岳飞, 呼天明, 谢国平.  接种丛枝菌根真菌对低温胁迫下垂穗披碱草影响的研究[J]. 草地学报, 2016, 24(5): 1009-1015.
      XU Y M, CHU X T, WU Y, MIAO Y J, XU Y F, HU T M, XIE G P.  Effect of arbuscular mycorrhiza inoculation on cold resistance in Elymus nutans[J]. Acta Agrestia Sinica, 2016, 24(5): 1009-1015.

    15. [15]

      邢红爽, 张瑞, 郭绍霞.  高温胁迫下丛枝菌根真菌对百合耐热性的影响[J]. 青岛农业大学学报(自然科学版), 2018, 35(4): 258-264.
      XING H S, ZHANG R, GUO S X.  Effects of arbuscular mycorrhizal fungi on heat tolerance of lily plants grown under high temperature stress[J]. Journal of Qingdao Agricultural University (Natural Science)重庆欢乐生肖, 2018, 35(4): 258-264.

    16. [16]

      GARG N, PANDEY R.  Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt stressed Cajanus cajan L. (Millsp.) genotypes[J]. Mycorrhiza, 2015, 25(3): 165-180. doi:

    17. [17]

      王倡宪, 李晓林, 宋福强, 王贵强, 李北齐.  两种丛枝菌根真菌对黄瓜苗期枯萎病的防效及根系抗病相关酶活性的影响[J]. 中国生态农业学报, 2012, 20(1): 53-57. doi:
      WANG C X, LI X L, SONG F Q, WANG G Q, LI B Q.  Effects of arbuscular mycorrhizal fungi on fusarium wilt and disease resistance-related enzyme activity in cucumber seedling root[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 53-57. doi:

    18. [18]

      李霞, 彭霞薇, 伍松林, 李志茹, 冯红梅, 江泽平.  丛枝菌根对翅荚木生长及吸收累积重金属的影响[J]. 环境科学, 2014, 35(8): 3142-3148.
      LI X, PENG X W, WU S L, LI Z R, FENG H M, JIANG Z P.  Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings[J]. Environmental Science, 2014, 35(8): 3142-3148.

    19. [19]

      孟祥英. 丛枝菌根真菌对镉污染土壤中黑麦草生长的影响. 哈尔滨: 东北林业大学硕士学位论文, 2010.
      MENG X Y. Effect of arbuscular mycorrhizal fungi on growth of ryegrass in cadmium contaminated soils. Mater Thesis. Harbin: Northeast Forestry University, 2010.

    20. [20]

      CHEN X, WU C H, TANG J J, HU S J.  Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J]. Chemosphere, 2005, 60(5): 665-671. doi:

    21. [21]

      SHAHABIVAND S, MAIVAN H Z, GOLTAPEH E M, SHARIFI M, ALILOO A A.  The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity[J]. Plant Physiology and Biochemistry, 2012, 60(): 53-58. doi:

    22. [22]

      田野, 张会慧, 孟祥英, 王娟, 胡举伟, 孙广玉.  镉(Cd)污染土壤接种丛枝菌根真菌(Glomus mosseae)对黑麦草生长和光合的影响[J]. 草地学报, 2013, 21(1): 135-141.
      TIAN Y, ZHANG H H, MENG X Y, WANG J, HU J W, SUN G Y.  Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth and photosynthesis characteristics of Lolium perenne L. under Cd contaminated soil[J]. Acta Agrestia Sinica, 2013, 21(1): 135-141.

    23. [23]

      NAN Z B, LI C J. Neotyphodium in native grasses in China and observations on endophyte/host interactions. Proceedings of the 4th international Neotyphodium/grass interactions symposium, Soest, Germany, 2010.

    24. [24]

      任继周.  西北草原上几种常见的毒草[J]. 甘肃农业大学学报, 1959, (1): 9-16.
      REN J Z.  Several common toxic weeds on the northwest grassland[J]. Journal of Gansu Agricultural University, 1959, (1): 9-16.

    25. [25]

      刘宗平. 动物中毒病学. 北京: 中国农业出版社, 2006.
      LIU Z P. Animal toxicology. Beijing: China Agriculture Press, 2006.

    26. [26]

      ZHAO M L, GAO X L, WANG J, HE X L, HAN B.  A review of the most economically important poisonous plants to the livestock industry on temperate grasslands of China[J]. Journal of Applied Toxicology, 2013, 33(1): 9-17. doi:

    27. [27]

      LEUCHTMANN A, BACON C W, SCHARDL C L, WHITE J F, TADYCH M.  Nomenclatural realignment of Neotyphodium species with genus Epichloë[J]. Mycologia, 2014, 106(2): 202-215. doi:

    28. [28]

      LI C J, NAN Z B, PAUL V H, DAPPRICH P D, LIU Y.  A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China[J]. Mycotaxon重庆欢乐生肖, 2004, 90(1): 141-147.

    29. [29]

      CHEN L, LI X Z, LI C J, SWOBODA G A, YOUNG C A, SUGAWARA K, LEUCHTMANN A, SCHARDL C L.  Two distinct Epichloë pecies symbiotic with Achnatherum inebrians, drunken horse grass[J]. Mycologia, 2015, 107(): 863-873. doi:

    30. [30]

      CHEN N, HE R L, CHAI Q, LI C J, NAN Z B.  Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians[J]. Plant Growth Regulation, 2016, 80(3): 367-375. doi:

    31. [31]

      LI C J, LI F, GOU X Y, NAN Z B. Effects of abiotic stresses on Achnatherum inebrians by symbiotic endophyte of Neotyphodium gansuense重庆欢乐生肖. // Multifunctional Grasslands in Changing World. Guangzhou: Guangdong People’s Publishing House, 2008: 819.

    32. [32]

      XIA C, ZHANG X X, CHRISTENSEN M J, NAN Z B, LI C J.  Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians)[J]. Fungal Ecology, 2015, 22(): 26-34.

    33. [33]

      XIA C, LI N N, ZHANG X X, FENG Y, CHRISTENSEN M J, NAN Z B.  An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions[J]. Fungal Ecology重庆欢乐生肖, 2016, 16(): 26-33.

    34. [34]

      ZHANG X X, LI C J, NAN Z B, MATTHEW C.  Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators[J]. Weed Research, 2012, 52(1): 70-78. doi:

    35. [35]

      ZHANG X X, LI C J, NAN Z B.  Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense[J]. Journal of Hazardous Materials, 2010, 175(): 703-709. doi:

    36. [36]

      ZAUROV D E, BONOS S, MURPHY J A, RICHARDSON M, BELANGER F C.  Endophyte infection can contribute to aluminum tolerance in fine fescues[J]. Crop Science, 2001, 41(): 1981-1984. doi:

    37. [37]

      MONNET F, VAILLANT N, HITMI A, COUDRET A, SALLANAO H.  Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne[J]. Physiologia Plantarum, 2001, 113(): 557-563. doi:

    38. [38]

      BONNET M, CAMARES O, VEISSEIRE P.  Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv. Apollo)[J]. Journal of Experimental Botany重庆欢乐生肖, 2000, 51(): 945-953.

    39. [39]

      王萍, 张兴旭, 赵晓静, 李春杰.  重金属元素胁迫对醉马草生长及生理生化指标的影响[J]. 草业科学, 2014, 31(6): 1080-1086. doi:
      WANG P, ZHANG X X, ZHAO X J, LI C J.  Effects of three metal ions on growth and physio-biochemical response of Achnatherum inebrians[J]. Pratacultural Science, 2014, 31(6): 1080-1086. doi:

    40. [40]

      张兴旭. 醉马草–内生真菌共生体对胁迫的响应及其次生代谢产物活性的研究. 兰州: 兰州大学博士学位论文, 2012.
      ZHANG X X. Response of Achnatherum inebrians / Neotyphodium gansuense重庆欢乐生肖 symbiont to stress and secondary metabolites activities. PhD Thesis. Lanzhou: Lanzhou University, 2012.

    41. [41]

      李春杰, 南志标, 张昌吉, 张崇岳, 张燕慧.  醉马草内生真菌对家兔的影响[J]. 中国农业科技导报, 2009, 11(2): 84-90. doi:
      LI C J, NAN Z B, ZHANG C J, ZHANG C Y, ZHANG Y H.  Effects of drunken horse grass infected with endophyte on Chinese rabbit[J]. Journal of Agricultural Science and Technology, 2009, 11(2): 84-90. doi:

    42. [42]

      ZHANG X X, NAN Z B, LI C J, GAO K.  Cytotoxic effect of ergot alkaloids in Achnatherum inebrians infected by the Neotyphodium gansuense endophyte[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7419-7422. doi:

    43. [43]

      LIANG Y, WANG H C, LI C J, NAN Z B, LI F D.  Effects of feeding drunken horse grass infected with Epichloë gansuensis endophyte on animal performance, clinical symptoms and physiological parameters in sheep[J]. BMC Veterinary Research, 2017, 13(): 223-. doi:

    44. [44]

      VIGNALE M V, IANNONE L J, PINGET A D, DE BATTISTA J P, NOVAS M V.  Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass[J]. Plant and Soil, 2016, 405(): 279-287. doi:

    45. [45]

      LI F, GUO Y E, CHRISTENSEN M J, GAO P, LI Y Z, DUAN T Y.  An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth[J]. Mycorrhiza, 2018, 28(): 159-169. doi:

    46. [46]

      VICARI M, HATCHER P E, AYRES P G.  Combined effect of foliar and mycorrhizal endophytes on an insect herbivore[J]. Ecology, 2002, 83(9): 2452-2464. doi:

    47. [47]

      钟睿, 周晓蓉, 张稚钦, 夏超, 李娜娜, 张兴旭.  不同生境下Epichloë gansuensis对醉马草根际土壤丛枝菌根真菌的影响[J]. 草业科学, 2017, 34(8): 1627-1934. doi:
      ZHONG R, ZHOU X R, ZHANG Z Q, XIA C, LI N N, ZHANG X X.  Effect of Epichloë gansuensis on arbuscular mycorrhizal fungi spore diversity in rhizosphere soil of drunken horse grass under different growth conditions[J]. Pratacultural Science, 2017, 34(8): 1627-1934. doi:

    48. [48]

      高萍, 闫飞扬, 蒙程, 李芳, 段廷玉.  黄土高原不同耕作措施下AM真菌的多样性[J]. 草业科学, 2016, 33(10): 1917-1923. doi:
      GAO P, YAN F Y, MENG C, LI F, DUAN T Y.  Diversity of arbuscular mycorrhizal fungi under different agricultural practices in Loess Plateau in China[J]. Pratacultural Science, 2016, 33(10): 1917-1923. doi:

    49. [49]

      VAN GEEL M, BUSSCHAERT P, HONNAY O, LIEVENS B.  Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing[J]. Journal of Microbiological Methods, 2014, 106(): 93-100. doi:

    50. [50]

      TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S.  MEGA6: Molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(): 2725-2729. doi:

    51. [51]

      YE W, HU S, WU L, GE C, CUI Y, CHEN P, XU J, DONG G, GUO L, QIAN Q.  Fine mapping a major QTL qFCC7L for chlorophyll content in rice (Oryza sativa L.) cv. PA64s[J]. Plant Growth Regulation, 2017, 81(1): 81-90. doi:

    52. [52]

      MCGONIGLE T P, MILLER M H, EVANS D G, FAIRCHILD D L, SWAN J A.  A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi[J]. New Phytologist, 1990, 115(3): 495-501. doi:

    53. [53]

      LARIMER A L, BEVER J D, CLAY K.  Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass[J]. Oikos, 2012, 121(12): 2090-2096. doi:

    54. [54]

      CHU-CHOU M, GUO B, AN Z Q, HENDRIX J W, FERRISS R S, SIEGEL M R, DOUGHERTY C T, BURRUS P B.  Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte[J]. Soil Biology and Biochemistry, 1992, 24(): 633-637. doi:

    55. [55]

      GUO B Z, HENDRIX J W, AN Z Q, FERRISS R S.  Role of Acremonium endophyte of fescue on inhibition of colonization and reproduction of mycorrhizal fungi[J]. Mycologia, 1992, 84(): 882-885. doi:

    56. [56]

      MÜLLER J.  Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne[J]. Functional Plant Biology, 2003, 30(): 419-424. doi:

    57. [57]

      LINDSEY C, SLAUGHTER, REBECCA L. MCCULLEY.  Aboveground Epichloë coenophiala-grass associations do no affect belowground fungal symbionts or associated plant, soil parameters[J]. Microbial Ecology, 2016, 72(3): 682-691. doi:

    1. [1]

      万志文曹莹陈振江李春杰 . 温度对醉马草内生真菌共生体幼苗生长和生物碱产量的影响. 草业科学, 2016, 10(7): 1353-1360. doi:  重庆欢乐生肖

    2. [2]

      钟睿周晓蓉张稚钦夏超李娜娜张兴旭 . 不同生境下Epichloë gansuensis对醉马草根际土壤丛枝菌根真菌的影响. 草业科学, 2017, 11(8): 1627-1634. doi:  重庆欢乐生肖

    3. [3]

      李娜娜赵玉凤夏超钟睿张兴旭 . 甲基托布津对醉马草种带内生真菌的灭菌活性. 草业科学, 2016, 10(7): 1306-1314. doi: 

    4. [4]

      李会强汪建军张光明蔺伟虎田沛 . 干旱条件下内生真菌对多年生黑麦草生长的影响. 草业科学, 2016, 10(4): 599-607. doi:  重庆欢乐生肖

    5. [5]

      林子然张英俊 . 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 12(1): 115-122. doi:  重庆欢乐生肖

    6. [6]

      刘雪松 . 温度、光照及PEG胁迫对不同生态型醉马草种子萌发的影响. 草业科学, 2019, 36(6): 1600-1607. doi: 

    7. [7]

      王美宁蔺伟虎马碧花李苗苗田沛 . Zn和Cd处理下内生真菌对中华羊茅生长及内源激素的影响. 草业科学, 2019, 36(9): 2250-2258. doi: 

    8. [8]

      杨春雪黄寿臣陈飞李丽丽 . 松嫩盐碱草地旋覆花根围AM真菌侵染特性及多样性. 草业科学, 2017, 11(2): 231-239. doi: 

    9. [9]

      蒙程陆妮柴琦 . 不同pH下接种AM真菌和根瘤菌对紫花苜蓿生长的影响. 草业科学, 2017, 11(2): 352-360. doi:  重庆欢乐生肖

    10. [10]

      胡春霞李秀璋方爱国李春杰 . 色氨酸对醉马草内生真菌共生体麦角生物碱含量的影响. 草业科学, 2014, 8(5): 844-849. doi:  重庆欢乐生肖

    11. [11]

      李芳张峰郭艳娥高萍段廷玉 . 放牧和AM真菌对夏季青藏高原东缘老芒麦生长和白粉病的影响. 草业科学, 2017, 11(12): 2528-2537. doi:  重庆欢乐生肖

    12. [12]

      张伟珍古丽君段廷玉 . AM真菌提高植物抗逆性的机制. 草业科学, 2018, 12(3): 491-507. doi:  重庆欢乐生肖

    13. [13]

      岳英男杨春雪 . 松嫩盐碱草地土壤理化特性与丛枝菌根真菌侵染的相关性. 草业科学, 2014, 8(8): 1437-1444. doi: 

    14. [14]

      曹莹姚祥陈水红李春杰 . 甲基托布津对野大麦内生真菌共生体的生长及生理生化的影响. 草业科学, 2018, 12(2): 323-330. doi: 

    15. [15]

      王凯王伟林王豪邦裴天悦董鑫蔺伟虎田沛 . 内生真菌对不同地理种群中华羊茅生长及营养品质的影响. 草业科学, 2020, 37(3): 522-531. doi:  重庆欢乐生肖

    16. [16]

      蔺伟虎汪建军李会强张光明田沛 . 不同生长条件下内生真菌对多年生黑麦草生理特性的影响. 草业科学, 2016, 10(8): 1574-1582. doi: 

    17. [17]

      杨春雪陈飞岳英男阎秀峰 . 松嫩盐碱草地26种植物根围丛枝菌根真菌多样性特征. 草业科学, 2015, 9(12): 2008-2020. doi:  重庆欢乐生肖

    18. [18]

      向芬李维刘红艳周凌云丁玎曾振 . 镉胁迫对茶园绿肥槐叶决明“茶肥1号”的生长及吸收积累的影响. 草业科学, 2018, 12(7): 1679-1684. doi:  重庆欢乐生肖

    19. [19]

      李桂真陈志超李新川盛建东黄长福金俊香 . 新疆盐生植物芦苇根围AM真菌的空间分布特征. 草业科学, 2016, 10(7): 1267-1274. doi: 

    20. [20]

      赵翀廖萍张瀚能杨雅琳张琴李艳宾张利莉赵珂张小平 . 甘草内生真菌多样性及群落结构. 草业科学, 2016, 10(7): 1315-1323. doi: 

  • 重庆欢乐生肖

    图 1  重庆欢乐生肖 土壤样品中检测到的丛枝菌根真菌操作分类单元(种水平)的邻接法进化树

    Figure 1.  Neighbor-Joining (NJ) tree showing all arbuscular mycorrhizal fungal OTUs/species detected in soil

    图 2  内生真菌和Cd2+重庆欢乐生肖互作对醉马草菌根侵染率的影响

    Figure 2.  Effects of Epichloë endophyte and Cd2+ on the mycorrhizal colonization associated with Achnatherum inebrians

    图 3  内生真菌和Cd2+重庆欢乐生肖互作对醉马草幼苗株高的影响

    Figure 3.  Effects of Epichloë endophyte and Cd2+重庆欢乐生肖 on the plant height of drunken horse grass

    图 4  内生真菌、AM真菌和Cd2+重庆欢乐生肖三者互作对醉马草地上鲜重的影响

    Figure 4.  Effects of Epichloë endophyte (E), arbuscular mycorrhizal (AM) fungi, and Cd2+重庆欢乐生肖 on the aboveground fresh weight of drunken horse grass

    图 5  内生真菌和Cd2+互作对醉马草地上干重的影响

    Figure 5.  Effects of Epichloë endophyte and Cd2+重庆欢乐生肖 on the aboveground dry weight of drunken horse grass

    图 6  内生真菌、AM真菌和Cd2+三者互作对醉马草叶绿素含量的影响

    Figure 6.  Effects of Epichloë endophyte (E), arbuscular mycorrhizal (AM) fungi, and Cd2+ on the chlorophyll content of drunken horse grass

    图 7  内生真菌、AM真菌和Cd2+三者互作对醉马草根长的影响

    Figure 7.  Effects of Epichloë endophyte (E), arbuscular mycorrhizal (AM) fungi, and Cd2+ on root length of drunken horse grass

    图 8  内生真菌、AM真菌和Cd2+重庆欢乐生肖三者互作对醉马草根鲜重的影响

    Figure 8.  Effects of Epichloë endophyte (E), arbuscular mycorrhizal (AM) fungi, and Cd2+ on root fresh weight of drunken horse grass

    图 9  内生真菌和Cd2+重庆欢乐生肖两者互作对醉马草根干重的影响

    Figure 9.  Effects of Epichloë endophyte and Cd2+重庆欢乐生肖 concentration on root dry weight of drunken horse grass

    表 1  内生真菌、AM真菌和Cd2+三者互作对醉马草地上部分生长及生理的影响的三因素方差分析

    Table 1.  Three-way ANOVA of the effects of Epichloë endophyte (E), arbuscular mycorrhizal (AM) fungi, and Cd2+ on the aboveground growth and physiology of drunken horse grass

    因素 Factor株高
    Plant height/cm
    叶绿素
    Chlorophyll content/(mg·dm–2)
    地上鲜重
    Aboveground fresh weight/g
    地上干重
    Aboveground dry weight/g
    FPFPFPFP
    AM 1.329 0.253 307.506 0.000 35.021 0.000 0.002 0.962
    E 25.091 0.000 62.654 0.000 14.308 0.000 30.866 0.000
    Cd 38.334 0.000 35.644 0.000 32.377 0.000 49.775 0.000
    AM × E 0.875 0.353 32.461 0.000 0.819 0.369 0.546 0.463
    AM × Cd 0.792 0.503 15.014 0.000 1.898 0.139 1.068 0.369
    E × Cd 6.380 0.001 14.746 0.000 2.395 0.076 6.485 0.001
    AM × E × Cd 1.368 0.261 10.350 0.000 2.832 0.045 2.076 0.112
     AM: 丛枝菌根;E: 内生真菌;Cd: 镉。表2同。
     AM: arbuscular mycorrhizal; E: endophyte; Cd: cadmium; similarly for Table 2.
    下载: 导出CSV

    表 2  内生真菌、AM真菌和Cd2+重庆欢乐生肖三者互作对醉马草根生长的影响

    Table 2.  Effects of Epichloë endophyte (E), arbuscular mycorrhizal (AM) fungi, and Cd2+ on root growth of drunken horse grass

    因素 Factor根长 Root length/cm根鲜重 Root fresh weight/g根干重 Root dry weight/g
    FPFPFP
    AM 89.912 0.000 0.069 0.794 5.778 0.019
    E 24.970 0.000 6.655 0.012 5.216 0.026
    Cd 26.882 0.000 12.989 0.000 17.855 0.000
    AM × E 4.424 0.039 25.375 0.000 1.450 0.233
    AM × Cd 2.509 0.067 3.535 0.020 0.892 0.450
    E × Cd 6.626 0.001 5.311 0.002 5.144 0.003
    AM × E × Cd 3.539 0.019 0.920 0.436 0.534 0.661
    下载: 导出CSV
    重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖

                      <dfn id='7qu6i'><optgroup id='7qu6i'></optgroup></dfn><tfoot id='7qu6i'><bdo id='7qu6i'><div id='7qu6i'></div><i id='7qu6i'><dt id='7qu6i'></dt></i></bdo></tfoot>

                      <ul id='7qu6i'></ul>

                      • 加载中
                      • 图(9)表(2)
                        计量
                        • PDF下载量:  46
                        • 文章访问数:  20802
                        • HTML全文浏览量:  668
                        文章相关
                        • 通讯作者:  张兴旭, .cn
                        • 收稿日期:  2018-06-03
                        • 刊出日期:  2019-03-01
                        通讯作者: 陈斌,
                        • 1. 

                          shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                        1. 本站搜索
                        2. 百度学术搜索
                        3. 万方数据库搜索
                        4. CNKI搜索

                        /

                        返回文章
                        重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖