重庆欢乐生肖

欢迎访问 草业科学,今天是

mucaokaihuadefenzijiliyanjiujinzhan

王娜 谢文刚

引用本文: 王娜,谢文刚. 牧草开花的分子机理研究进展. 草业科学, 2019, 36(3): 835-848 doi: shu
Citation:  WANG N, XIE W G. Research progress on the molecular mechanism of flowering time in forage grasses. Pratacultural Science, 2019, 36(3): 835-848 doi: shu

牧草开花的分子机理研究进展

    作者简介: 王娜(1994-),女,甘肃静宁人,在读硕士生,主要从事牧草种质资源与育种研究。E-mail: .cn;
    通讯作者: 谢文刚, .cn
  • 基金项目: 国家基础研究项目(973项目)(2014CB138704);长江学者与创新团队发展计划项目(IRT-17R50)

摘要: 开花期是牧草重要的农艺性状,对牧草产量、品质和利用价值具有重要影响。开花时间由微效多基因控制,调控网络复杂。开展牧草开花基因的研究,阐明牧草开花调控分子机理,有利于加快牧草开花基因挖掘,培育满足生产需求的不同成熟度的牧草新品种。牧草开花基因在模式植物拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)等农作物已开展了系统深入的研究,而牧草研究相对较少。本文综述了牧草开花基因研究最新进展,以期为牧草开花基因研究提供理论参考。

English

    1. [1]

      WOODS D P, MCKEOWN M A, DONG Y, PRESTON J C, AMASINO R M.  Evolution of VRN2/GhD7-like genes in vernalization-mediated repression of grass flowering[J]. Plant Physiology, 2016, 170(4): 2124-2135. doi:

    2. [2]

      DENG W, CASAO M C, WANG P, SATO K, HAYES P M, FINNEGAN E J, TREVASKIS B.  Direct links between the vernalization response and other key traits of cereal crops[J]. Nature Communication重庆欢乐生肖, 2015, 6(6): 5882-.

    3. [3]

      VOGEL K P, BREJDA J J, WALTERS D T, BUXTON D R.  Switchgrass biomass production in the midwest USA[J]. Agronomy Journal, 2002, 94(3): 413-420. doi:

    4. [4]

      MOURADOV A, CREMER F, COUPLAND G.  Control of flowering time: Interacting pathways as a basis for diversity[J]. Plant Cell重庆欢乐生肖, 2002, 14(Suppl): S111-S130.

    5. [5]

      BOSS P K, BASTOW R M, MYLNE J S, DEAN C.  Multiple pathways in the decision to flower: Enabling, promoting, and resetting[J]. Plant Cell, 2004, 16(Suppl): S18-S31.

    6. [6]

      PENG F Y, HU Z, YANG R C.  Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants[J]. BMC Genomics, 2016, 17(1): 573-. doi:

    7. [7]

      DORCA-FORNELL C, GREGIS V, GRANDI V, COUPLAND G, COLOMBO L, KATER M M.  The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems[J]. Plant Journal for Cell & Molecular Biology, 2011, 67(6): 1006-1017.

    8. [8]

      COCKRAM J, JONES H, LEIGH F J, O'SULLIVAN D, POWELL W, LAURIE D A, GREENLAND A J.  Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity[J]. Journal of Experimental Botany, 2007, 58(6): 1231-1244. doi:

    9. [9]

      HIGGINS J A, BAILEY P C, LAURIE D A.  Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses[J]. PLoS One, 2010, 5(4): e10065-. doi:

    10. [10]

      CHIRUTA C, FILIPOV F, CALIN M.  Estimating the duration of daylight in a given time of the year depending on the latitude of the location[J]. Research Journal of Agricultural Science, 2010, 42(3): 71-76.

    11. [11]

      重庆欢乐生肖 wada m, shimazaki k, iino m. light sensing in plants. 2005. berlin: springer, 2005: 333-337.

    12. [12]

      FERNÁNDEZ V, TAKAHASHI Y, LEGOURRIEREC J, COUPLAND G.  Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days[J]. The Plant Journal, 2016, 86(5): 426-440.

    13. [13]

      ONOUCHI H, IGEÑO M I, PÉRILLEUX C, GRAVES K, COUPLAND G.  Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. Plant Cell, 2000, 12(6): 885-900. doi:

    14. [14]

      IZAWA T, MIHARA M, SUZUKI Y, GUPTA M, ITOH H, ATSUSHI J, NAGANO, MOTOYAMA R, SAWADA Y, YANO M, MASAMI YOKOTA HIRAI, MAKINO A, NAGAMURA Y.  Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field[J]. Plant Cell, 2011, 23(5): 1741-1755. doi:

    15. [15]

      BENDIX C, MENDOZA J M, STANLEY D N, MEELEY R, HARMON F G.  The circadian clock-associated gene gigantea1, affects maize developmental transitions[J]. Plant Cell & Environment重庆欢乐生肖, 2013, 36(7): 1379-1390.

    16. [16]

      MARTIN J, STORGAARD M, ANDERSEN C H, NIELSEN K K.  Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog[J]. Plant Molecular Biology, 2004, 56(2): 159-169. doi:

    17. [17]

      GAGIC M, FAVILLE M, KARDAILSKY I, PUTTERILL J.  Comparative genomics and functional characterisation of the GIGANTEA, gene from the temperate forage perennial ryegrass Lolium perenne[J]. Plant Molecular Biology Reporter, 2015, 33(4): 1-9.

    18. [18]

      HECHT V, LAURIE R E, WELLER J.  Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula[J]. Frontiers in Plant Science, 2014, 5(17): 486-.

    19. [19]

      王鹏, 张春庆, 陈化榜, 吴承来.  小麦冬性强弱评价体系的建立[J]. 生态学报, 2012, 32(4): 1230-1240.
      WANG P, ZHANG C Q, CHEN H B, WU C L.  The evaluation system of strength of winterness in wheat[J]. Acta Ecologica Sinica, 2012, 32(4): 1230-1240.

    20. [20]

      ZHANG X K, XIAO Y G, ZHANG Y, XIA X C, DUBCOVSKY J, HE Z H.  Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit[J]. Crop Science重庆欢乐生肖, 2008, 42(2): 1690-1694.

    21. [21]

      安艳荣. 二穗短柄草VILs基因对开花时间的调控机理研究. 青岛: 山东农业大学博士学位论文, 2015.
      AN Y R. Mechanism of regulation on flowering time by VIL重庆欢乐生肖 genes in Brachypodium distachyon. PhD Thesis. Qingdao: Shandong Agricultural University, 2015.

    22. [22]

      YOSHIDA T, NISHIDA H, ZHU J, NITCHER R, DISTELFELD A, AKASHI Y, KATO K, DUBCOVSKY J.  Vrn-D4, is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat[J]. Theoretical & Applied Genetics, 2010, 120(3): 543-552.

    23. [23]

      PIDAL B, YAN L, FU D, ZHANG, TRANQUILLI G, DUBCOVSKY J.  The CArG-box located upstream from the transcriptional start of wheat vernalization gene VRN1 is not necessary for the vernalization response[J]. Journal of Heredity, 2009, 100(3): 355-364. doi:

    24. [24]

      DUBCOVSKY J, CHEN C, YAN L.  Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley[J]. Molecular Breeding, 2005, 15(4): 395-407. doi:

    25. [25]

      YAN L, LOUKOIANOV A, BLECHL A, TRANQUILLI G, RAMAKRISHNA W, SANMIGUEL P, BENNETZEN J L, ECHENIQUE V, DUBCOVSKY J.  The wheat VRN2 gene is a flowering repressor downregulated by vernalization[J]. Science, 2004, 303(5664): 1640-1644. doi:

    26. [26]

      KIPPES N, ZHU J, CHEN A, VANZETTI L, LUKASZEWSKI A, NISHIDA H, KATO K, DVORAK J, DUBCOVSKY J.  Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat[J]. Molecular Genetics and Genomics, 2014, 289(1): 47-62. doi:

    27. [27]

      MARQUARDT S, BOSS P K, HADFIELD J, DEAN C.  Additional targets of the Arabidopsis autonomous pathway members, FCA and FY[J]. Journal of Experimental Botany, 2006, 57(13): 3379-3386. doi:

    28. [28]

      CHENG J Z, ZHOU Y P, LV T X, XIE C P, TIAN C E.  Research progress on the autonomous flowering time pathway in Arabidopsis[J]. Physiology & Molecular Biology of Plants重庆欢乐生肖, 2017, 23(3): 1-9.

    29. [29]

      SIMPSON G G.  The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time[J]. Current Opinion in Plant Biology, 2004, 7(5): 570-574. doi:

    30. [30]

      EOM H, PARK S J, KIM M K, KIM H, KANG H, LEE I.  TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C[J]. Plant Journal for Cell & Molecular Biology重庆欢乐生肖, 2017, 93(1): 79-91.

    31. [31]

      YABUTA T, HAYASI T.  Biochemical studies of 'bakanae' fungus of rice[J]. Journal of the Imperial Agricultural Experimental Station Nisigahara Tokyo, 1940, 25(3): 365-400.

    32. [32]

      黄桃鹏, 李媚娟, 王睿, 李玲.  赤霉素生物合成及信号转导途径研究进展[J]. 植物生理学报, 2015, (8): 1241-1247.
      HUANG T P, LI M J, WANG R, LI L.  Progress in study of gibberellins biosynthesis and signaling transduction pathway[J]. Plant Physiology Journal, 2015, (8): 1241-1247.

    33. [33]

      BLAZQUEZ M A, GREEN R, NILSSON O, SUSSMAN M R, WEIGEL D.  Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J]. Plant Cell, 1998, 10(5): 791-800. doi:

    34. [34]

      XUE L J, ZHANG J J, XUE H W.  Genome-wide analysis of the complex transcriptional networks of rice developing seeds[J]. PloS One, 2012, 7(2): e31081-. doi:

    35. [35]

      黄磊玉.  植物开花基因的研究进展[J]. 农家科技, 2017, (3): 257-.
      HUANG L Y.  Research progress of flowering genes in plants[J]. Nongjia Keji重庆欢乐生肖, 2017, (3): 257-.

    36. [36]

      李昱, 罗志鹏, 赵淑清.  拟南芥开花时间调控的整合途径[J]. 植物生理学报, 2007, 43(5): 799-804.
      LI Y, LUO Z P, ZHAO S Q.  Integration pathway of flowering time control in Arabidopsis[J]. Plant Physiology Journal重庆欢乐生肖, 2007, 43(5): 799-804.

    37. [37]

      袁敏, 邢朝斌, 葛伟娜, 王莉, 郭棣.  拟南芥开花诱导基因FT的蛋白表达及纯化[J]. 基因组学与应用生物学, 2017, 36(8): 3053-3056.
      YUAN M, XING C B, GE W N, WANG L, GUO D.  Protein expression and purification of flowering inducer gene FT in Arabidopsis thaliana[J]. Genomics and Applied Biology, 2017, 36(8): 3053-3056.

    38. [38]

      兰树斌, 李建国.  植物LFY基因的研究进展[J]. 基因组学与应用生物学, 2007, 26(s1): 132-137.
      LAN S B, LI J G.  Advance of studies on LFY gene in plants[J]. Genomics and Applied Biology, 2007, 26(s1): 132-137.

    39. [39]

      王利琳, 梁海曼, 庞基良, 朱睦元.  拟南芥LEAFY基因在花发育中的网络调控及其生物学功能[J]. 遗传, 2004, 26(1): 137-142. doi:
      WANG L L, LIANG H M, PANG J L, ZHU M Y.  Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development[J]. Hereditas, 2004, 26(1): 137-142. doi:

    40. [40]

      SAMACH A, ONOUCHI H, GOLD S E, DITTA G S, SCHWARZ-SOMMER Z, YANOFSKY M F, COUPLAND G.  Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(): 1613-1616. doi:

    41. [41]

      HEPWORTH S R, VALVERDE F, RAVENSCROFT D, MOURADOV A, COUPLAND G.  Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. Embo Journal, 2002, 21(16): 4327-4337. doi:

    42. [42]

      SEARLE I, HE Y, TURCK F, VINCENT C, FORNARA F, KRÖBER S, AMASINO R A, COUPLAND G.  The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Genes & Development重庆欢乐生肖, 2006, 20(7): 898-912.

    43. [43]

      SCHULTZ E A, HAUGHN G W.  LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis[J]. Plant Cell, 1991, 3(8): 771-781. doi:

    44. [44]

      LOHMANN J U, HONG R L, HOBE M, BUSCH M A, PARCY F, SIMON R, WEIGEL D.  A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105(6): 793-803. doi:

    45. [45]

      GUSTAFSON-BROWN C, SAVIDGE B, YANOFSKY M F.  Regulation of the arabidopsis floral homeotic gene APETALA1[J]. Cell, 1994, 76(1): 131-143. doi:

    46. [46]

      SHELDON C C, ROUSE D T, FINNEGAN E J, PEACOCK W J, DENNIS E S.  The molecular basis of vernalization: The central role of FLOWERING LOCUS C(FLC)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3753-3758. doi:

    47. [47]

      MICHAELS S D, AMASINO R M.  FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. Plant Cell, 1999, 11(5): 949-956. doi:

    48. [48]

      PUTTERILL J, ROBSON F, LEE K, SIMON R, COUPLAND G.  The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell, 1995, 80(6): 847-857. doi:

    49. [49]

      SKØT L, SANDERSON R, THOMAS A, SKØT K, THOROGOOD D, LATYPOVA G, ASP T, ARMSTEAD I.  Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations[J]. Plant Physiology, 2011, 155(2): 1013-1022. doi:

    50. [50]

      FIIL A, LENK I, PETERSEN K, JENSEN C S, NIELSEN K K, SCHEJBEL B, ANDERSEN J R, LÜBBERSTEDT T.  Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.)[J]. Plant Science, 2011, 180(2): 228-237. doi:

    51. [51]

      WANG J, FORSTER J W.  Flowering time regulation in perennial ryegrass[J]. Euphytica, 2017, 213(5): 106-. doi:

    52. [52]

      XIE W G, ROBINS J G, BUSHMAN B S.  A genetic linkage map of tetraploid orchardgrass (Dactylis glomerata L.) and quantitative trait loci for heading date[J]. Genome, 2012, 55(5): 360-369. doi:

    53. [53]

      谢文刚. 鸭茅分子遗传连锁图谱构建及开花基因定位. 成都: 四川农业大学博士学位论文, 2013.
      XIE W G. Genetic linkage map and flowering time gene mapping in orchardgrass (Dactylis glomerata L.). PhD Thesis. Chengdu: Sichuan Agricultural University, 2013.

    54. [54]

      ZHAO X X, HUANG L K, ZHANG X Q, WANG J P, YAN D F, LI J, TANG L, LI X L, SHI T W.  Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq[J]. Scientific Reports, 2016, 6(): 29345-. doi:

    55. [55]

      ZHAO X X, BUSHMAN B S, ZHANG X Q, ROBBINS M D, LARSON S R, ROBINS J G, THOMAS A.  Association of candidate genes with heading date in a diverse Dactylis glomerata population[J]. Plant Science, 2017, 265(): 146-153.

    56. [56]

      FENG G, HUANG L, LI J, WANG J, XU L, PAN L, ZHAO X, WANG X, HUANG T, ZHANG X.  Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.)[J]. BMC Plant Biology, 2017, 17(1): 216-. doi:

    57. [57]

      陈锡, 赵德刚, 陈莹, 李小冬, 吴佳海, 王小利.  高羊茅FaFT2基因克隆及表达分析[J]. 植物生理学报, 2017, (8): 1523-1531.
      CHEN X, ZHAO D G, CHEN Y, LI X D, WU J H, WANG X L.  Cloning and expression analysis of FaFT2 gene in tall fescue[J]. Plant Physiology Journal重庆欢乐生肖, 2017, (8): 1523-1531.

    58. [58]

      王小利, 陈伟, 李晚忱, 吴佳海, 刘晓霞, 杨义成.  高羊茅春化基因FaVRN1的克隆与分析[J]. 核农学报, 2009, 23(5): 778-784.
      WANG X L, CHEN W, LI W C, WU J H, LIU X X, YANG Y C.  Cloning and characterization of vernalizational gene FaVRN1 from tall fescue[J]. Journal of Nuclear Agricultural Sciences, 2009, 23(5): 778-784.

    59. [59]

      SHINOZUKA H, HAND M L, COGAN N O, SPANGENBERG G C, FORSTER J W.  Nucleotide diversity of vernalization and flowering-time-related genes in a germplasm collection of meadow fescue (Festuca pratensis Huds.) Darbysh.)[J]. Ecology & Evolution, 2013, 3(13): 4415-4426.

    60. [60]

      ZENG F, BILIGETU B, COULMAN B, SCHELLENBERG M P, FU Y B.  RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.)[J]. PLoS One, 2017, 12(5): e0177417-. doi:

    61. [61]

      LOMAX A, WOODS D P, DONG Y, BOUCHÉ F, RONG Y, MAYER K S, ZHONG X, AMASINO R M.  An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in Brachypodium distachyon[J]. Plant Journal for Cell & Molecular Biology, 2018, 93(5): 871-882.

    62. [62]

      GAO R, GRUBER M Y, AMYOT L, HANNOUFA A.  SPL13 regulates shoot branching and flowering time in Medicago sativa[J]. Plant Molecular Biology, 2018, 96(1/2): 1-15. doi:

    63. [63]

      AUNG B, GRUBER M Y, HANNOUFA A.  The MicroRNA156 system: A tool in plant biotechnology[J]. Biocatalysis & Agricultural Biotechnology, 2015, 4(4): 432-442.

    64. [64]

      LIU M, LEI L, MIAO F, POWERS C, ZHANG X, DENG J, TADEGE M, CARVER B F, YAN L.  The STENOFOLIA gene from Medicago alters leaf width, flowering time and chlorophyll content in transgenic wheat[J]. Plant Biotechnology Journal, 2018, 16(1): 186-196. doi:

    65. [65]

      KOVI M R, AMDAHL H, ALSHEIKH M, ROGNLI O A.  De novo and reference transcriptome assembly of transcripts expressed during flowering provide insight into seed setting in tetraploid red clover[J]. Scientific Reports, 2017, 7(): 44383-. doi:

    66. [66]

      navarro m p, ribalta f m, hurgobin b, croser j s, kaur p. gene networks underlying faster flowering induction in response to far-red light. biorxiv, 2017.

    67. [67]

      ADHIKARI K, BUIRCHELL B, YAN G, SWEETINGHAM M.  Two complementary dominant genes control flowering time in albus lupin(Lupinus albus L.)[J]. Plant Breeding, 2011, 130(4): 496-499. doi:

    1. [1]

      高晨轩南志标 . 我国牧草种带真菌研究进展. 草业科学, 2019, 36(7): 1792-1802. doi:  重庆欢乐生肖

    2. [2]

      谢文刚刘文献张建全王彦荣 . 牧草分子遗传连锁图谱及其应用. 草业科学, 2014, 8(6): 1147-1159. doi: 

    3. [3]

      孙晓青毛祝新傅华黄德君李倩 . 牧草中脂肪酸及其影响因素. 草业科学, 2014, 8(9): 1774-1780. doi: 

    4. [4]

      王飞刘林波高天歌高鲤包爱科王锁民 . 转录组学在牧草上的应用进展. 草业科学, 2019, 36(2): 402-413. doi: 

    5. [5]

      石自忠王明利胡向东崔姹 . 我国牧草种植成本收益变化与比较. 草业科学, 2017, 11(4): 902-911. doi:  重庆欢乐生肖

    6. [6]

      朱林郑淑欣许兴侯志军 . 宁夏中部灌水量对豆━禾牧草混播的影响. 草业科学, 2014, 8(9): 1752-1760. doi: 

    7. [7]

      于徐根徐桂花戴征煌刘水华甘兴华 . 江西省林草地牧草资源与生产力调查及评价. 草业科学, 2019, 36(6): 1479-1489. doi:  重庆欢乐生肖

    8. [8]

      产祝龙张慧刘梦垚 . 植物生长调节物质与草坪草及牧草的非生物逆境应答. 草业科学, 2019, 36(12): 3007-3023. doi: 

    9. [9]

      张晖麦欢耀陈三雄杨昀静钱叙羽王溢 . 蛋白质组学在牧草中的应用研究. 草业科学, 2020, 37(9): 1855-1870. doi: 

    10. [10]

      王缠潘永泰王静刘发央姚宝辉苏军虎 . 高原鼢鼠DNA条形码筛选. 草业科学, 2020, 37(12): 1-10. doi:  重庆欢乐生肖

    11. [11]

      肖兴艳张雷一刘方姚斌龙健 . 两种土壤改良剂对3种牧草生长及土壤含水量的影响. 草业科学, 2015, 9(11): 1887-1891. doi: 

    12. [12]

      韩蓉蓉文亦芾史亮涛 . 牧草磷素营养及其耐低磷特性. 草业科学, 2014, 8(8): 1549-1555. doi: 

    13. [13]

      陈琴陈莉敏郑群英肖冰雪张昌兵张洪轩刘刚杨满业 . 5种牧草叶片上不同部位的SPAD值比较. 草业科学, 2014, 8(7): 1318-1322. doi:  重庆欢乐生肖

    14. [14]

      高晶袁建振侯扶江常生华王召锋傅华王静 . 饲料及乳制品中黄曲霉毒素的检测. 草业科学, 2018, 12(1): 222-231. doi:  重庆欢乐生肖

    15. [15]

      张洁史东吉王召锋侯扶江 . 我国牛奶安全生产现状及对策. 草业科学, 2017, 11(1): 138-147. doi: 

    16. [16]

      王梦琦陈志远马婷婷林淼 . 3种饲草组合对湖羊瘤胃还原硝酸盐过程的影响. 草业科学, 2016, 10(3): 489-494. doi: 

    17. [17]

      王英舜贺俊杰 . 1961-2010年锡林浩特地区夏季降水量特征的小波分析. 草业科学, 2014, 8(11): 2021-2025. doi:  重庆欢乐生肖

    18. [18]

      王亚亚杨梅陆姣云杨惠敏 . 陇东苹果园土壤浸提液对黑麦草和紫花苜蓿种子萌发及幼苗生长的影响. 草业科学, 2018, 12(3): 551-557. doi:  重庆欢乐生肖

    19. [19]

      李林株李成云张 帆吕忠蕾 . 延边地区多种野生植物缩合单宁的含量及提取条件的优化. 草业科学, 2014, 8(5): 977-981. doi: 

    20. [20]

      石自忠王明利 . 我国草产品贸易及效率分析. 草业科学, 2019, 36(3): 888-897. doi: 

  • 重庆欢乐生肖

    图 1  冬小麦VRN1VRN2VRN3反馈调节环

    Figure 1.  Winter wheat VRN1, VRN2 and VRN3 feedback regulator rings

    图 2  多年生黑麦草开花调控示意图

    Figure 2.  Perennial ryegrass flowering control schematic diagram

    图 3  鸭茅开花调控示意图

    Figure 3.  Dactylis glomerata重庆欢乐生肖 flowering control schematic diagram

    表 1  多年生黑麦草开花途径参与基因

    Table 1.  Genes involved in flowering pathway of Perennial ryegrass

    基因名 Gene name基因编号 GeneBank accession同源基因 Homologous gene通路/功能 Pathways/Function
    LpTFL1AF316419HvTFL1抑制 Repressor
    LpSOC1AtSOC1中央整合子 Central integrator
    LpFT3DQ309592AtFT、OsHd3a、OsFTL2、HvFT、TaFT1
    LpTSFAtFT
    LpSFTHvFT4
    LpPRR37OsPRR37光周期 Photoperiod
    LpPRR73OsPRR73
    LpGIDQ534010AtGI、HvGI、TaGI、OsGI
    LpPHYAAtPHYA
    LpPHYBAtPHYB
    LpPHYCPHYC
    LpCRY1AtCRY1
    LpCRY2AtCRY2
    LpTOC1TOC1
    LpCOAY600919AtCO,OsHd1、HvCO1、TaHd1-1
    (LpHD1)AM489608
    Lpck2a-2AB213317Wheat tck2a生物钟 Circadian clock
    Lpck2a-1AB213316OsCK2a
    LpCOL1DQ145928AtCO、OsHd1
    LpLHYLHY
    LpLIR1DQ206624rice LIR
    LpGA20ox1DQ071620赤霉素 Gibberellin
    LpFLDFLD自主促进 Autonomous
    LpFCAAY654582AtFCA
    LpFYAtFY
    LpVrn2-2DQ202716TmVrn2春化 Vernalization
    LpOX1DQ1459272OG-Fe(II) oxygenase
    LpJMJCJUMONJI-like
    LpVRN1AY198326TmVrn1、OsAP1、AtAP1、LtMADS1
    (LpMADS1)GQ258851
    LpVRN5VRN5
    LpMADS2AY198327AtAP1、LtMADS2
    LpMADS3AY198328AtAP1、barley BM3
    LpMADS4AY198329TaMADS12花发育基因 Flower development
    LpMADS5AY198330barley BM9
    LpMADS6AY198331OsMADS5花发育基因 Flower development
    LpMADS7AY198332OsE31254
    LpMADS8AY198333OsMADS24
    LpMADS9AY198334Barley BM7
    LpMADS10DQ110009OsMADS22、VRT2、SVP/AGL24-like春化分生组织特性基因
    Vernalization meristem identity
    LpMADS16DQ110011SVP-like
    下载: 导出CSV

    表 2  牧草开花基因

    Table 2.  Forage grass flowering gene

    草种
    Species
    开花基因
    Flowering gene
    基因功能
    Gene function
    参考文献
    Reference
    多年生黑麦草
    Lolium perenne
    LpFT3由生物钟控制表达,与日长、春化时间相关,过度表达促进开花
    Controlled by the circadian clock, related to the day length and the vernalisation time, over expression promotes flowering.
    [51]
    LpCO长时间诱导,编码的蛋白促进开花
    It is induced by long days and the encoded protein promotes flowering.
    [50]
    LpTFL1FT 基因功能相反,参与开花抑制
    In contrast to FT, it is involved in repression of flowering.
    [50]
    LpVRN1春化诱导,表达模式与开花时间变化密切相关
    It is induced by vernalisation and the expression pattern is correlated with variation in flowering time.
    [51]
    LpGI与拟南芥 GI 同源,参与光周期开花时间控制
    It is orthologous to Arabidopsis GI and involved in photoperiodic flowering time control.
    [17]
    LpHd1水稻 OsHd1 的直系同源基因,影响开花时间
    An ortholog of rice OsHd1 in affecting time of flowering.
    [49]
    高羊茅
    Festuca arundinacea
    FaFT2受光照调控,过表达促进开花
    Controlled by light, over expression promotes flowering.
    [57]
    FaVRN1开花诱导基因
    Flowering inducing gene.
    [58]
    草甸羊茅
    Festuca pratensis
    FpVRN1诱导 FT1 基因,在春季促进生殖器官的发育
    FT1 gene expression is induced to promote development of reproduction organs in spring.
    [59]
    FpCO直接结合 FT 基因的启动子以激活表达
    Directly bind to the promoter of the FTgene to activate expression.
    FpFT1促进开花
    Promote flowering
    FpCK2α在短日照条件下通过间接相互作用,增强 CO-like 蛋白质的功能
    Enhances function of the CO-like protein through indirect interaction under short-day.
    扁穗冰草
    Agropyron cristatum
    ACOLCO 候选基因,在叶片中特异性表达
    It is a CONSTANS (CO) candidate gene and showed specific expression in leaves.
    [60]
    二穗短柄草
    Brachypodium distachyon
    EZL1拟南芥 CURLY LEAF 1 的直系同源基因,影响开花时间
    An ortholog of Arabidopsis CURLY LEAF 1 in affecting flowering time.
    [61]
    紫花苜蓿
    Medicago sativa
    SPL13 调控开花时间和营养生长
    It is regulating flowering time and vegetative growth.
    [62]
    miR156 过表达导致生物量产量加倍,开花时间延迟,纤维素含量增加和木质素含量减少Over expression resulted in a twofold increase in biomass yield, delayed flowering time, enhanced cellulose content, and reduced lignin.[63]
    蒺藜苜蓿
    Medicago truncatula
    STENOFOLIA(STF) 参与植株叶片的扩展,增加叶绿素含量,促进开花
    It is involved in leaf expansion, increased chlorophyll content and accelerated flowering.
    [64]
    红三叶
    Trifolium pratense
    WAT1降低结实能力,减少种子产量
    Reduces firmness and seed yield.
    [65]
    NIP4-1提高种子产量
    Increases seed yield.
    ZFP4 与结实相关
    Closely related to seed setting.
    ERF106控制种子重量
    Controls seed weight.
    Pt4提高种子产量
    Increases seed yield.
    地三叶
    Trifolium subterraneum
    CO-like WNK5-like 蛋白介导远红光下的开花启动
    Floral initiation under FR-enriched light is mediated by CO-like and WNK5-like proteins.
    [66]
    白羽扁豆
    Lupinus albus
    显性基因 Ef1Ef2当(Ef1_,Ef2_)同时出现时,表型早开花;(ef1ef1, ef2ef2)同时缺失时,表型晚开花;如果只有一个基因(Ef1_,ef2ef2 or ef1ef1, Ef2_)存在时,表型为中间体
    When both dominant genes were present (Ef1_, Ef2_) the phenotype was early flowering, when both dominant genes were absent (ef1ef1, ef2ef2) the phenotype was late flowering and if only one gene was present (Ef1_, ef2ef2 or ef1ef1, Ef2_), the phenotype was intermediate.
    [67]
    下载: 导出CSV
    重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖
  • <code id='lxlnl'><i id='lxlnl'><q id='lxlnl'><legend id='lxlnl'><pre id='lxlnl'><style id='lxlnl'><acronym id='lxlnl'><i id='lxlnl'><form id='lxlnl'><option id='lxlnl'><center id='lxlnl'></center></option></form></i></acronym></style><tt id='lxlnl'></tt></pre></legend></q></i></code><center id='lxlnl'></center>

      <dd id='lxlnl'></dd>

          <style id='lxlnl'></style><sub id='lxlnl'><dfn id='lxlnl'><abbr id='lxlnl'><big id='lxlnl'><bdo id='lxlnl'></bdo></big></abbr></dfn></sub>
          <dir id='lxlnl'></dir>
      1. 加载中
      2. 图(3)表(2)
        计量
        • PDF下载量:  13
        • 文章访问数:  474
        • HTML全文浏览量:  342
        文章相关
        • 通讯作者:  谢文刚, .cn
        • 收稿日期:  2017-04-17
        • 刊出日期:  2018-03-01
        通讯作者: 陈斌,
        • 1. 

          shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

        1. 本站搜索
        2. 百度学术搜索
        3. 万方数据库搜索
        4. CNKI搜索

        /

        返回文章
        重庆欢乐生肖 Yabo下载_Yabo官网下载 加拿大pc_加拿大pc官网 重庆欢乐生肖 重庆欢乐生肖 重庆欢乐生肖